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Abstract

The project consists of the design, simulation, construction and characterization of
a vibrant magnetic structure for its potential use as the core of magnetostrictive vibra-
tional energy harvesters. This element transfers the vibrations from an environmental
source to the active magnetostrictive material, enabling this way the energy generation
through the experienced magnetization changes and Faraday’s law principles. So, its
performance becomes essential in the subsequent energy conversion efficiency of the
harvester device.

The first part of the project consists of several numerical simulations (by using
MATLAB® and Gmsh©) to verify the viability of the design and optimize the sys-
tem. This task will be done by the modification of relevant parameters to reduce the
resonance frequency and maximize the stresses generated in the active material for
obtaining the maximum output power. The reduction of the working frequency is jus-
tified since most of the industrial processes take place at frequencies around or even
lower than 100 Hz. At this interval, the piezoelectric harvester devices, which are the
most commonly used, present relevant disadvantages related to their increasing size
as frequency decreases. In this context, a compact, simple, long lasting and cheap
structure design could improve vibrational energy harvesting performance in industrial
applications thank to the substitution of piezoelectric harvesters by magnetostrictive
ones.

In the second part of the project a prototype will be built in the laboratory and
it will be characterized to verify if the experimental results agree with the numerical
simulations and if satisfactory performance is obtained in terms of resonance frequency
and amplitude of vibration.

Keywords: vibrational energy harvesting; magnetostriction; low frequency vibrating
systems; mechanical resonance; damping; finite element method; MATLAB®, galfenol.



Resumen

El trabajo consiste en el diseño, simulación, construcción y caracterización de una
estructura magnética vibrante para su potencial uso como base en recolectores de
energía (“harvesters”) magnetostrictivos vibracionales. Este elemento transfiere las
vibraciones de una fuente del entorno al material magnetostrictivo activo, permitiendo
de esta forma la generación de energía a través de los cambios experimentados en la
magnetización y los principios de la ley de Faraday. Por lo tanto, su rendimiento es
esencial en la siguiente conversión energética en el dispositivo recolector.

En la primera parte del trabajo se realizarán varias simulaciones numéricas (con
MATLAB® y Gmsh©) para verificar la viabilidad del diseño y optimizar el sistema.
Esta tarea se realizará a través de la modificación de parámetros relevantes para re-
ducir la frecuencia de resonancia y maximizar las tensiones generadas en el material
activo para obtener la máxima potencia de salida. La reducción de la frecuencia de
resonancia está justificada porque la mayoría de los procesos industriales tienen lugar a
frecuencias entorno a o incluso por debajo de los 100 Hz. En este rango de frecuencias
los recolectores piezoeléctricos, los más comúnmente utilizados, presentan desventajas
significativas relacionadas con el progresivo aumento de sus dimensiones conforme la
frecuencia disminuye. En este contexto, un diseño de estructura compacta, sencilla, du-
radera y barata podría mejorar el rendimiento de la recolección de energía vibracional
en aplicaciones industriales gracias a la sustitución de los recolectores piezoeléctricos
por recolectores magnetostrictivos.

En la segunda parte del proyecto se construirá un prototipo en el laboratorio y se
caracterizará para comprobar si los resultados experimentales coinciden con los resulta-
dos de las simulaciones numéricas y si se obtiene un resultado satisfactorio en términos
de frecuencia de resonancia y amplitud de vibración.

Palabras clave: recolector de energía vibracional; magnetostricción; sistemas vi-
brantes de baja frecuencia; resonancia mecánica; amortiguación; método de elementos
finitos; MATLAB®, galfenol.
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Chapter 1

Introduction

1.1. Background and motivation

The current work is presented as a Bachelor’s Thesis (Trabajo Fin de Grado) in
Industrial Engineering, with a workload corresponding to 12 ECTS. The motivation
about magnetostrictive harvesters to collect energy from ambient vibrations was ob-
tained from the proposal to participate in this line of research by the Sciences Depart-
ment of the Public University of Navarre (UPNA).

The knowledge background about this topic was acquired throughout several sub-
jects of the Bachelor’s degree such as, among others, Further Studies in Physics, Ad-
vanced Physics, Elasticity and Strength of Materials and Design and Testing of Ma-
chines; and was highly enriched during the progress of this work.

1.2. Scope statement

The majority of industrial processes have associated the generation of vibrations
at relatively low frequencies (around 100 Hz). These environmental vibrations can be
used for the generation of green electrical energy through energy harvesting princi-
ples. Within vibration harvesters, those based in piezoelectric materials are the most
commonly employed, however, at this frequency interval, these devices display some
disadvantages principally related to their gradually larger size when the frequency of
vibration is reduced. This way, the main objective of the project is the design and
optimization, based upon mechanical criteria, of a U-shaped vibrant magnetic struc-
ture to be employed as the core of a potential magnetostrictive harvester to substitute
piezoelectric ones in low-frequency industrial applications.

The importance of this analysis relies on the fact that this structure represents
the basis of any magnetostrictive vibrational energy harvester, since its performance
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2 Introduction

strongly determines the efficiency of the energy transformation from the initial mechan-
ical energy (vibration) to the final electrical energy. This performance highly depends
on the mechanical properties of the vibrant structure, and on the design parameters,
fundamentally, the resonance frequency, the stresses and the displacement amplitudes
under vibration. The optimization of these parameters becomes the sub-objective of
this study. Their enhancement enables the design of a low resonance frequency, com-
pact, easily manufactured, long-lasting and cheap device. Its simpler and low cost
features will permit the massive application to any type of industrial process and even
at remote locations, permitting the piezoelectric-based devices substitution.

The design is carried out with SolidWorks® CAD software and it is optimized in
the programming environment of MATLAB®, by performing both static and dynamic
mechanical simulations. Then a prototype is built being its performance compared
with the one predicted by the numerical simulations.

1.3. Content

The project has been organized in six chapters which are recommended to be read
in order. This present Chapter 1 exposes an introduction to the project and defines
the scope and the content. Chapter 2 introduces the reader to the subject of magne-
tostrictive harvesters and the importance of the mechanical properties of the structure
on the performance of the device. In this chapter, literature is reviewed in order to
know which is the current state of the art. Chapter 3 summarizes the design procedure
by performing mechanical simulations in order to obtain the theoretical results. Chap-
ter 4 explains in detail the prototype construction, the laboratory equipment and the
procedure followed to take the experimental measurements as well as the obtained ex-
perimental results. In Chapter 5 the obtained results are discussed and the theoretical
and experimental results are contrasted. Finally, in Chapter 6 the author’s conclusions
about this project and future work lines are exposed. The technical drawings of the
designed harvester structure and 3D-printed support needed for the lab measurements
are collected in Appendix A. In Appendix B it is shown the procedure to choose the
optimal magnetostrictive material for the construction of the future harvester. The
MATLAB® scripts for the mechanical simulations and the plots are collected in Ap-
pendix C.



Chapter 2

Literature Review and Theoretical
Background

2.1. Internet of Things and Energy Harvesters Context

In the past few decades the development of wireless devices has experimented a huge
growth thanks to the comfort and high number of possibilities they provide [1]. One
of the applications of these wireless devices is to use them as sensors which can mon-
itor and gather information from different systems in order to analyze their behavior
and accordingly generate external responses. The technology involving the creation
of interacting wireless sensor networks connected to the Internet which can interact
between them is known as the Internet of Things (IoT). It is a line of research broadly
used in relevant fields such as health monitoring, home and industrial automation or
security (see Figure 2.1); and expected to have even more importance in the future [1].

Figure 2.1: IoT applications examples and overall integration [2].

3
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Applications of IoT have become almost infinite thanks to the rapid development of
the implicated technologies [3]. These sensors have achieved to be of a very small size
and power consumption thanks to the Systems on Chip (SoCs), which are integrated
circuits including all the different modules typical from a computer [4]. The networks
of communication for these kind of devices have also experimented great development
in order to achieve greater range with less power consumption. With respect to their
source of power, the current most common choice is the use of batteries, due to the
simplicity of their installation. However, their main drawback is that they require of
certain maintenance since they have to be replaced periodically. This fact joined to
the expected growth of IoT devices (see Figure 2.2) results in a scenario determined by
a great expense of resources and negative environmental impact. On the other hand,
self-powered sensors seem to be the solution to this problem, and have become of high
interest in the last few years to provide the IoT devices with energy in the most efficient
way [3].

Figure 2.2: Global number of connected IoT devices [5].

One interesting possibility is to convert ambient energy into electrical energy to feed
this type of mechanisms. The extraction of the energy present in the device body or
in its surrounding environment, which would otherwise dissipate, is what it is called
energy harvesting. In the case of low power and low and mid-range applications, the
sensors could be self-powered under this principle, avoiding the necessity of batteries [6].
In the case of medium power applications where batteries are required or for long-range
communications, energy harvesters can be employed for increasing batteries life-time
and for recharging them [6]. Energy harvesters would therefore contribute to moderate
the environmental impact at the time that they reduce the maintenance costs associated
to the batteries replacement. In addition to that, these devices can be implemented in
remote and difficult-access places where regular battery maintenance is unfeasible.
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Different types of harvesters can be found depending on the ambient source chosen
to power the IoT devices. The most common are: heat (thermal energy), vibrations
(mechanical energy) and electromagnetic waves (radio-frequency energy, RF) [6]. Fig-
ure 2.3 shows a scheme with the most common energy sources for IoT applications. Not
every source of energy will be adequate for powering any device. A previous analysis to
compare the consumption of the powered target component and the energy harvested
by each source has to be made. Figure 2.4 shows the power consumption of some
selected technological devices and a comparison between the approximated harvested
power of each energy source.

Figure 2.3: Scheme of the different IoT applications energy sources [6].

(a) (b)

Figure 2.4: (a) Typical power consumption of some selected battery-powered technological
devices. (b) Harvested power from different environment energy sources [1].

Anyway, a common characteristic of harvesting systems is that the energy generation
procedure is generally developed by a functional or active material [7], namely those
materials in which external stimuli (temperature, pressure, etc.) enable to control one
or more of their properties. Nevertheless, passive materials (materials in which no
property can be controlled by external stimuli) are also used. A great investment is
expected to be made by companies to develop and perfect these technologies [1].
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2.2. Vibration Energy Harvesters

Among the different energy sources, this work centers on vibration energy harvesters.
Structural vibrations seem to be one of the most promising sources [7] since they are
present in many different locations, including industrial environments. For instance,
solar energy, which can be harvested based on the photoelectric effect, presents high de-
pendence on the weather. Thermal energy, based on the thermoelectric effect, presents
difficulties to achieve the sufficient temperature difference to obtain the desired power
output. Finally, the power obtained from electromagnetic waves is generally very low
(microwatts) and it is significantly reduced when distance from the radio frequency
source increases.

Consequently, vibration harvesters present a large field of applications. To maximize
the power output, both the frequency range and amplitude of the potential vibrations
have to be deeply analyzed. As a result, several types of harvesters have been devel-
oped due to the great range of vibration sources. For example, buildings and bridges
show low frequencies (≤ 0.1 Hz) and low amplitudes (≤ 0.1 g); home appliances show
moderate frequencies (≤ 150 Hz) and amplitudes (≤ 0.5 g) [8]; and motors of auto-
mobiles and heavy machinery show high amplitudes and a frequency which strongly
depends on the engine speed. This work is focused on the common industrial processes
with vibrations at frequencies around 100 Hz [9] and acceleration amplitudes around
10 m/s2 [9].

Similar to the general classification, vibration energy harvesters can also employ
passive or active materials [7] for energy generation (see Figure 2.5). In general, active-
based devices exhibit more advantages since they offer a higher coupling between the
mechanical and electrical domain [10] (explained in more detail in Section 2.3.4).

Figure 2.5: Vibration energy harvesters classification.

Attending to passive materials-based harvesters, two different types can be found:
electrostatic and electromagnetic. Electrostatic energy harvesters act as variable ca-
pacitors (pair of electrodes with a dielectric layer in between whose distance changes
due to the vibrations). As the electrodes are charged at the beginning, the change of
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distance between them induces alternating currents (AC). On the other hand, electro-
magnetic harvesters use coils and permanent magnets to generate the electrical energy.
Their working principle is based on Faraday’s law. Briefly, when vibration occurs a
relative movement between the magnet and the coil results, enabling the induction of
an AC voltage between the coil terminals and therefore the energy generation.

On the other side, active materials-based devices can also be divided into two groups,
explicitly: piezoelectric and magnetostrictive materials. Piezoelectric energy harvesters
are based on the piezoelectric effect [1]. As commented before, these devices are the
most commonly employed, however, they present several drawbacks such as the brit-
tleness of the piezoelectric materials, the high output impedance signal that requires
complex signal condition electronics and their larger sizes as frequency decreases (≤ 100
Hz). These disadvantages can be overcome with the use of magnetostrictive harvesters
[7]. They are based on materials that usually present higher mechanical strength and
lower output impedance signal when compared with piezoelectrics. These character-
istics permit an easy fabrication procedure, turning magnetostrictive harvesters into
long-lasting generators with a longer useful life and with a clear applicability at low
frequencies. Nevertheless, they require the use of coils and magnets for their fabri-
cation, hindering their integration with micro-electromechanical systems (MEMS). A
summary of the advantages and disadvantages of each vibration energy harvester type
can be seen in Table 2.1.

Table 2.1: Summary of the advantages and disadvantages of the different vibration energy
harvester types [3].

Type Advantages Disadvantages

Electromagnetic -no need of active material -bulky size: magnets and pick-up coil
-no external voltage source -difficult to integrate with MEMS

-max. voltage of 0.1 V

Electrostatic -no need of active material -external voltage (or charge) source
-compatible with MEMS -mechanical constraints needed
-voltages of 2–10 V -capacitive

Piezoelectric -no external voltage source -depolarization
-high voltages of 2–10 V -brittleness in bulk piezolayer
-compact configuration -poor coupling in piezo-film
-compatible with MEMS -charge leakage
-high coupling in single crystals -high output impedance

Magnetostrictive -high mechanical-electrical coupling -nonlinear effect
-no problems of depolarization -pick-up coil
-high flexibility -may need bias magnets
-suited to low frequency vibration -difficult to integrate with MEMS
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2.3. Magnetostrictive Vibration Energy Harvesters

2.3.1. Energy Transfer and Transformation

Generally, two steps can be considered in the energy generation procedure developed
by the magnetostrictive harvesters.

• The transformation of the mechanical energy of the external vibration into mag-
netic energy by means of the inverse magnetostrictive (or Villari) effect experi-
enced by the active magnetostrictive material.

• The conversion of the magnetic energy into electrical (electromagnetic-coupling)
governed by Faraday’s law principles.

In a few words, electrical energy generation is produced when the ambient vibrations
of the source are transmitted to the magnetostrictive material. As a consequence,
the active or magnetostrictive material experiences variable mechanical stresses that
generate different magnetization states and thus, a variable magnetic flux through the
collecting coil. Therefore, the transmission of the ambient vibrations to the active
material is essential for the harvester performance and subsequent energy conversion
efficiency. Consequently, a meticulous design stage of the harvester vibrating magnetic
structure is strictly required for obtaining an optimized response, since this element is
the one responsible of transferring the vibration to the magnetostrictive material fixed
on it.

In a second order of relevance, other aspects such as mechanical damping and the
reorientation of magnetic domains in the material (hysteresis) may introduce some
energy losses that affect to the energy generation efficiency. The overall energy flow
description can be graphically seen in Figure 2.6.

Figure 2.6: Energy flow diagram of a magnetostrictive vibration energy harvester.

2.3.2. Magnetostriction and Villari Effect

Magnetostriction was first measured by J. P. Joule in 1842 when he magnetized
an iron sample and measured its length change. It can be defined as the property of
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ferromagnetic materials that produces a dimension change when they are exposed to
an external magnetic field.

Ferromagnetic materials are internally divided into magnetic domains. These re-
gions can be defined as the areas of the material where the magnetization points in the
same direction. The boundaries between domains are called domain walls. Although
both elements affect magnetostriction, our analysis will be developed under the Stoner-
Wohlfarth approximation that considers only the effect of non-interacting domains for
the explanation of the phenomenon.

As Figure 2.7 illustrates, after applying an external magnetic field, H , the magnetic
domains start to orient in the magnetic field direction. When the external field is
further increased a saturation state is reached (the magnetization of every domain is
in the same direction, acting as a single domain with saturation magnetization Ms).
Depending on the magnetostriction sign an increase (positive magnetostriction) or
shrinkage (negative magnetostriction) in its length results. This effect is generally
quantified by the saturation magnetostriction constant, λs = ∆L

L0
which is defined as

the variation in length ∆L (length in the saturated state, Lf , minus the initial length,
L0), divided by the initial length in the demagnetized state.

Figure 2.7: Effect of an external magnetic field, H, on the shape of a simplified ferromag-
netic material with positive magnetostriction after saturation.

Anyway, magnetostrictive harvesters are based on the inverse magnetostrictive effect
(or Villari effect) discovered in 1865 by the Italian physicist E. Villari. It consists on
a change on the material magnetization M (for a given external field H) when the
sample is subjected to mechanical stresses, σ.

The case of a single magnetic domain will be analyzed to understand the effect of
the sign of λs in the behavior of a magnetostrictive material under external stresses.
The application of uniaxial stress, σ, would lead to the induction of a uniaxial magnetic
anisotropy energy, Eσ, that comes given by Equation 2.1 [11].

Eσ =
3

2
λsσ sin2 θ (2.1)
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In the equation, θ is the angle formed by M s and the direction of application of the
stress. Depending on the sign of both λs (positive or negative magnetostriction) and
σ (material subjected to tension, σ > 0, or compression, σ < 0); two different lower-
energy states are possible. If both parameters have the same sign the state of lower
energy corresponds to θ = 0◦ (external field saturated state in Figure 2.8). On the other
hand, if they have opposite sign, the state with lower energy corresponds to θ = 90◦,
according to Equation 2.1, which is a demagnetized state (see stress induced saturation
in Figure 2.8). This means that for instance, tensile stresses favor the alignment of
magnetization in the direction of the applied stress or perpendicular to it depending on
whether λs, is positive or negative respectively. An opposite behavior is found under
compressive stresses.

Figure 2.8: Villari effect diagram.

Figure 2.8 exemplifies this equation for a material with positive λs under compressive
(σ < 0) loading. When the compressive stress applied is large, the magnetic domains
tend to rotate and their magnetization is oriented in the direction perpendicular to the
one of the external field (θ = 90◦); so the bulk magnetization M (weighted sum of the
magnetization of each of the domains m) is zero. As the compression is decreased,
considered as the application of progressively more intense tensile stresses, magnetic
domains start to align with the external field until reaching saturation.

2.3.3. Magnetostrictive Materials

From Villari effect it is known that the higher the magnetostriction coefficient, the
greater the magnetization of the material for a given stress. This way, high magne-
tostriction materials will be the ones of interest to be coupled to the designed vibrating
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structure. Different materials have been used for constructing magnetostrictive har-
vesters. Among the most relevant the following can be found.

• Terfenol–D: It is an alloy of rare elements, Tb0.3Dy0.7Fe2. It has the highest
room-temperature magnetostrictive coefficient. Its main disadvantages are its
high cost and its brittleness.

• Galfenol: It is an iron–gallium (Fe–Ga) alloy that exhibits also a large magne-
tostriction, although lower than Terfenol–D. It is highly used due to its good
trade-off between magnetostriction and mechanical properties (i.e. much higher
ultimate tensile strength than Terfenol–D, see Table 2.2). This optimum combi-
nation enables this material to be machined with conventional machining tech-
niques, forged, rolled, drawn and welded to other ferrous materials while main-
taining excellent magnetic properties [12]. Additionally, its performance is less
sensitive to temperature, it exhibits a lower density, and it is less expensive than
Terfenol–D (raw material cost to produce Galfenol is about $0.08/g compared
to $0.50/g for producing Terfenol–D [13]). The cost for this alloy is still high in
comparison with other materials. This cost is due to the complexity of the manu-
facturing process, known as advanced Bridgman process, that involves directional
solidification and the machining of the material. Due to its good properties, this
is the material that has been selected to conform the initial harvester prototype.

• Magnetostrictive Fe–Co alloys: They are good candidates for sensors, actuators
and energy harvesters due to their low cost and abundance. In addition to
this, iron–cobalt alloys present better mechanical properties than Terfenol–D
and Galfenol, as a result of their higher tensile strength and larger ductility [1].
However, a lower magnetostriction coefficient is found for these alloys.

A general comparison of these alloys is shown in Figure 2.9 and Table 2.2.

Figure 2.9: Absolute magnetostrictive coefficients of different materials [1].
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Table 2.2: Material properties of Fe–Co alloys, Terfenol–D and Galfenol [1].

Fe–Co alloys Terfenol–D Galfenol

Magnetostrictive Magnetostriction (ppm) Max > 140 Max 3000 Max 300
80–140 800–1200 120–240

Magnetic Coercivity (A/m) < 200 300 3000
Saturation flux density (T) 2.0 < 1.0 1.5
Relative permeability 100 < 10 < 100

Mechanical Tensile strength (MPa) 600 < 30 400
Elongation (%) < 30 < 1 1 <
Young’s modulus (GPa) 200 < 100 < 100

Thermal Coefficient of thermal 11.9 12 11
expansion (10−6 K−1)
Curie temperature (◦C) 900 380 680

Electrical Volume resistivity (µΩ · cm) 10 58 85

Density (g·cm−3) 8.4 9.25 7.8

2.3.4. Electromagnetic Coupling

The final stage in the electric energy generation is the conversion of magnetic en-
ergy of the active material under Faraday’s law principles. As it has been explained,
the stresses generated in the harvester structure due to mechanical vibrations will pro-
duce changes in the bulk magnetization of the magnetostrictive material and thus the
magnetic flux density in the material will change with time.

The time-varying magnetic flux density variation generates a voltage difference (elec-
tromotive force, emf) that can be collected with a coil according to:

εind = −NcAc
∂B

∂t
(2.2)

where εind is the induced electromotive force (emf), Nc is the number of turns of the
coil, Ac is the coil’s cross section and B is the modulus of the magnetic flux density
vector, B. In Equation 2.2 an homogeneous magnetic field parallel to the coil is
assumed. In order to obtain a higher emf, it is possible to increase the number of
turns. Nevertheless, as mentioned before, the bulkiness of this pick-up coil is one of
the disadvantages of this type of harvester.
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2.3.5. Harvester Configuration Examples

Attending to literature, a magnetostrictive vibration harvester is generally composed
of a mechanical vibrating body (frame), a magnetostrictive material body, a pick-up
coil and permanent magnets. Depending on their disposition in the assembly, two main
types of magnetostrictive harvester configurations can be found: axial and bending,
according to the stress state of the active material.

2.3.5.1. Axial Type Harvesters

This type of energy harvesters are characterized by the presence of axial stresses
on the magnetostrictive material. One of the main applications of axial type mag-
netostrictive energy harvesters is obtaining energy from impacts, as the configuration
designed for collecting energy from human walking [14] (see (b) in Figure 2.10).

(a) (b)

Figure 2.10: (a) General axial magnetostrictive energy harvester configuration. (b) Har-
vester to collect energy from human walking with pre-stress springs to protect
the Terfenol–D rod [7, 14].

The main drawbacks of this type of harvesters are the limited frequency bandwidth,
the necessity of protection mechanisms (e.g. pre-stress springs) due to the installation
of the magnetostrictive material (brittle in many occasions) in the load path, and the
large axial force required.

2.3.5.2. Bending Type Harvesters

Bending type magnetostrictive energy harvesters have the advantage that they can
collect energy from any vibrating surface, contrary to axial type harvesters. They are
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based on the vibration of a cantilever structure. Several different configurations have
been studied in the literature, and can be resumed in two groups: unimorph beam and
bimorph beam harvesters, depending on whether they have one or two magnetostrictive
material bodies respectively. Figure 2.11 shows three different examples of bending type
harvesters.

(a) (b)

(c)

Figure 2.11: (a) Bimorph magnetostrictive energy harvester [15]. (b, c) Unimorph magne-
tostrictive energy harvesters [16, 17].

One of the most-employed geometries is the so-called U-shaped (unimorph struc-
ture), which can be seen in Figure 2.12. This structure becomes the initial point of the
analysis made in this work. It can be seen that the harvester has a permanent mag-
net to create a magnetic flux that orients the magnetic domains in the longitudinal
direction when no stress is present.
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Figure 2.12: U-shaped unimorph magnetostrictive vibration energy harvester [18].

2.4. Structural Analysis

In order to design an optimum magnetostrictive harvester, numerical mechanical
simulations will be carried out. These simulations will be based on a linear elastic
model for the harvester. The numerical problem will be solved by FEM (Finite Element
Method). In the following section the fundamentals of Linear Elasticity Theory are
explained since these concepts will be required for the mechanical simulation of the
magnetostrictive energy harvester structure. A general mathematical formulation of
the theory will be made and then it will be studied both in the static and the dynamic
cases.

The Linear Elasticity Theory models how solids deform and the stresses they suffer
due to external loads. The two main assumptions of this model are: small deformations
and linear relationship between stress and strain components. This is why this model
is not valid if yielding is produced. This theory is included in the Theory of Elasticity
which belongs to the discipline of Solid Mechanics.

Figure 2.13: Diagram for the elastic model.
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The problem intended to be solved is the elastic problem, which is defined by the
geometry, the material mechanical properties and the actions. The geometry is defined
by domains (Ω) and boundaries (δΩ); the material mechanical properties mainly are:
the Young modulus (E) and the Poisson ratio (ν); and the actions can be of two
different types: volume forces (vector X) and boundary conditions (either supports,
u, or boundary actions, σ). The condition of fixation is known as Dirichlet boundary
condition (u = 0). A diagram of the defined elastic model is shown in Figure 2.13.

2.4.1. General Formulation of the Linear Elasticity Model

In this section, the general mathematical formulation of the linear elasticity model
is presented. In the subsequent equations, Einstein notation will be used (also known
as index notation). The elastic problem can be solved from three different expres-
sions: the strain-displacement equations (expression 2.3a), the motion equations (sec-
ond Newton’s law, expression 2.3b) and the constitutive equations (Hooke’s generalized
law, expression 2.3c) [19].

εij =
1

2
(ui,j + uj,i) (2.3a)

σij,j +Xi = ρüi (2.3b)
σij = Kijklεkl (2.3c)

In expressions 2.3a, 2.3b and 2.3c, ε is the strain tensor, u the displacement vector,
σ the stress tensor, X the volume forces vector, ρ the density, ü the acceleration
vector and K is the stiffness tensor of the material. If the material is considered
to be homogeneous (properties are the same in all the points of the material) and
isotropic (the material behaves the same along every direction); the stiffness tensor
just depends on two independent parameters: the Young Modulus E, and the Poisson
ratio ν. Usually two other parameters are used for simplifying the expressions, known
as Lamé parameters: λ and G; which can be calculated with equations 2.4a and 2.4b
[19].

λ =
Eν

(1 + ν)(1− 2ν)
(2.4a)

G =
E

2(1 + ν)
(2.4b)

With this new parameters Equation 2.3c becomes Equation 2.5 in matrix notation [19].
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

σx

σy

σz

τxy
τxz
τyz


=


λ+ 2G λ λ 0 0 0

λ λ+ 2G λ 0 0 0
λ λ λ+ 2G 0 0 0
0 0 0 2G 0 0
0 0 0 0 2G 0
0 0 0 0 0 2G





εx
εy
εz
εxy
εxz
εyz


(2.5)

where duplicated off-diagonal elements have been omitted due to the symmetry of the
strain and stress tensors. Equation 2.3a can also be rewritten in matrix notation as:



εx
εy
εz
εxy
εxz
εyz


=


1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1

2
0 1

2
0 0 0 0 0

0 0 1
2

0 0 0 1
2

0 0
0 0 0 0 0 1

2
0 1

2
0





ux,x

ux,y

ux,z

uy,x

uy,y

uy,z

uz,x

uz,y

uz,z


(2.6)

Combining this with Equation 2.5 the stresses can be determined as a function of the
derivatives of the displacements by using a 6×9 matrix called c as shown in Equation
2.7.



σx

σy

σz

τxy
τxz
τyz


=


λ+ 2G 0 0 0 λ 0 0 0 λ

λ 0 0 0 λ+ 2G 0 0 0 λ
λ 0 0 0 λ 0 0 0 λ+ 2G
0 G 0 G 0 0 0 0 0
0 0 G 0 0 0 G 0 0
0 0 0 0 0 G 0 G 0





ux,x

ux,y

ux,z

uy,x

uy,y

uy,z

uz,x

uz,y

uz,z


(2.7)

2.4.2. Elastostatics

Elastostatics is the application of linear elasticity to static cases, where the body is
under equilibrium, and accelerations are null (ü = 0). This way Equation 2.3b turns
into [19]:
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σij,j +Xi = 0 ⇔ ∇ · σ +X = ∇ · (c∇u) +X = 0 (2.8)

Where the components that conform the stress tensor σ are calculated from the product
of the prevoiusly defined matrix c and ∇u, defined as the 9-component column vector
constituted by the derivatives of the displacement vector components, as shown in
Equation 2.7.

2.4.3. Elastodynamics

Elastodynamics involves time-dependence on the equations of linear elasticity. This
way, in this case ü ̸= 0 and Equation 2.3b is written as [19]:

σij,j(t) +Xi(t) = ρüi(t) ⇔ ∇ · (c∇u(t)) +X(t) = ρü(t) (2.9)

This equation can be applied to a body that is moving in harmonic motion. In
this case, the system is considered to be oscillating at a unique frequency f . The
angular frequency corresponding to f is ω = 2πf . If the motion is considered to
be harmonic, then the system’s points will show oscillatory displacements, that is,
u(t) = u0 cos(ωt). By taking the second derivative of this expression with respect to
time it can be obtained:

ü(t) = −u0 ω
2 cos(ωt) (2.10)

where u0 is the displacement amplitude. Equation 2.10 can be solved by substituting
each of the time-dependent variables with their corresponding amplitudes, as shown in
Equation 2.11.

∇ · (c∇u0) +X0 = ρω2u0 (2.11)

2.4.3.1. Mechanical Resonance and Eigenfrequency Analysis

Resonance is a phenomenon consisting on the amplitude increase of the oscillations
of a dynamic system when an input (or a Fourier component of this input) is period-
ically applied at a frequency equal or close to the resonant frequencies of the system.
That is, an input applied at a frequency equal to or close to the natural frequency of
a system will produce much larger amplitude oscillations than the same input applied
at non-resonant frequencies. This phenomenon is observed in many different fields
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in which waves are involved. Some examples are electromagnetic resonance, acoustic
resonance (of special interest in music) or mechanical resonance.

Resonance frequencies are also known as natural frequencies or eigenfrequencies.
Each resonance frequency has its corresponding mode of vibration (eigenmode) with
its corresponding displacement amplitudes. For example, the three first eigenmodes of
a system consisting of a string tied at its two ends are shown in Figure 2.14.

Figure 2.14: Different modes of vibration of a string tied at its two ends.

Natural frequencies are strongly related to the mass and the stiffness of the system,
and are independent of the body load. They are also called eigenfrequencies because
their calculation is an eigenvalue problem. There will be as many eigenvalues as degrees
of freedom. However, in general just the first few modes of vibration are relevant in
practical applications.

For a vibrating system the calculation of the natural frequencies and their corre-
sponding modes of vibration is resumed to the following eigenvalue problem:

∇ · (c∇u0) = ρλnu0 (2.12)

where λn = ω2
n and c is the matrix defined in Equation 2.7. Then, the natural fre-

quencies ωn are related with the eigenvalues λn by ωn =
√
λn and the corresponding

displacements of the vibration modes are the eigenvectors u0.

It must be remarked that in Equation 2.12, u0 will just indicate the modes of
vibration of the system; but not the actual amplitude of the oscillations. In order to
calculate the amplitude of these oscillations, Equation 2.11 should be solved, taking
into account the external excitation, X = X0 cos(ωt).

2.4.3.2. Damping

Damping is defined as an influence within an oscillatory system that prevents it from
oscillating. It can be produced by different processes depending on the physical system.
In the case of the vibrational magnetic structure, damping will be produced by friction
within the mechanical system. Damping can be linearly modeled with the Rayleigh
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viscous damping model, which enables to calculate the damping matrix C (introduced
in the mechanical system equation multiplying the velocity of the displacement) as
a function of two parameters, known as Rayleigh parameters, α and β as shown in
Equation 2.13, where M and K are the mass and the stiffness matrices respectively.

C = αM + βK (2.13)

This damping will lower the resonance peak with respect to when no damping
is present since it otherwise would tend to infinity. Rayleigh parameters must be
determined empirically from the measurement of the resonance of the structure since
they depend on the geometry and the stress amplitude among other factors.



Chapter 3

Harvester Design and Simulation

In this chapter, the initial design of the harvester prototype is described as well as
the steps taken to perform the mechanical simulations.

3.1. Initial Design

As it was explained in Section 2.3.5, among the different existent harvester config-
urations, bending type harvesters are those which enable to obtain energy from any
vibrating surface. In particular U-shaped unimorph magnetostrictive vibration energy
harvesters are those showing the greatest power output and further research is needed
to improve their performance. For these reasons, this is the configuration selected to
study. There are several U-shaped harvesters, with more or less complex geometries.

The objective at long term would be to design a highly efficient harvester that can
be applied to many different applications and that can be produced in mass with a high
performance and low cost. In order to make the manufacturing process less expensive
and enable mass production while maintaining high performance, the configuration
proposed by Ueno in [20] is chosen to be the best alternative (see Figure 3.1).

Figure 3.1: U-shape magnetostrictive harvester configuration proposed by Ueno [20].

21
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This harvester configuration is composed by a simple-geometry body, which can
be manufactured with a low cost by bending a metal sheet. Additionally, in [20] this
geometry is demonstrated to have good resistance to fatigue.

(a)

(b)

Figure 3.2: (a) U-shape harvester with magnetostrictive material under tensile stresses. (b)
U-shape harvester with magnetostrictive material under compressive stresses
(harvester proposed by Ueno in [20]).

Figure 3.2 helps to explain the behavior of the initial harvester design. The per-
manent magnet creates a bias magnetic flux (indicated in red in the figure) which is
necessary to maintain the magnetostrictive material sheet saturated. The location of
the magnetostrictive material enables to produce uniform stresses in its longitudinal di-
rection, either tensile or compressive. The magnetic saturation of the magnetostrictive
material avoids the magnetic flux backflow when vibrations are produced. Thanks to
the Villari effect, the stresses on the magnetostrictive material will alternately change
the magnetic flux seen by the pick-up coil, generating an electromotive force.

So, the whole system behaves as a magnetic circuit which is formed by the harvester
body, the magnetostrictive material, the gap and the magnet. Since the gap size
will vary with the vibrations, this is another source of magnetic flux variation, and
thus contributes to the electromotive force generated in the coil. The tip mass is the
additional element which is added in the upper edge of the U-shaped body to tune
its frequency of resonance. By increasing the tip mass the stresses that the material
experiments can be augmented.

The size of the initial design of the harvester will be of 5 cm with 2 cm of magne-
tostrictive material. These are rough dimensions to start with the design and are based
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upon the broadening of future applications, since reduced size is associated with porta-
bility and comfort as indicated in Section 2.1. The final dimensions of the components
are shown in the technical drawings of Appendix A.

The objective is to maximize the stresses generated in the magnetostrictive mate-
rial (greater induced electromotive force) and to obtain the first or main resonance
frequency around 100 Hz. To reach this aim an extensive analysis of the magnetic vi-
brating structure of the harvester must be performed. In the present work, mechanical
numerical simulations are done in order to validate the design from the calculation of
the resonance frequency, the stresses and the displacements.

3.2. Mechanical Simulations

In the following section the concepts that will be used to perform the mechanical
numerical simulations are explained in detail and the implementation of the simulations
is explained.

3.2.1. Finite Element Method

FEM is a numerical method that is used for solving PDEs in two and three space
variables. It consists on dividing the continuum system into a finite number of el-
ements, which are simpler and smaller. This discretization is made by constructing
a mesh, which has a finite number of nodes. These nodes define the elements into
which the system has been discretized. Triangles are commonly used for discretizing
2D geometries, while tetrahedrons are used for 3D geometries, as shown in Figure 3.3.

(a) (b)

Figure 3.3: (a) 2D FEM example [21]. (b) 3D FEM example [22].
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Material properties are constant on each element and the problem to be solved
consists of a linear system of equations with n unknowns, being n the number of nodes
of the problem. It is in these nodes where the desired solutions are calculated (in the
case of this work, the displacements and the stresses).

3.2.2. Software Used in the Simulations

In order to do the mechanical simulation of the harvester design different software
programs will be used for modeling the 3D geometry, as well as for its adequate meshing
and for solving the PDE (Partial Differential Equation) problem.

3.2.2.1. SolidWorks®

SolidWorks® is a CAD software for mechanic modeling in 2D and 3D developed
by SolidWorks Corp., affiliated to Dassault Systèmes. The program enables to define
pieces and assemblies, as well as to draw technical plans easily. In the present work
a license SOLIDWORKS Student Design Kit has been used because it is free and it
provides with all the necessary tools for the geometry definition.

3.2.2.2. MATLAB®

MATLAB® is a high-level language which integrates computation, visualization and
programming in an interactive environment (https://es.mathworks.com/products/
matlab.html). It can be used to solve many different problems, especially the ones
related with matrices and vectors. It is typically used for the development of algo-
rithms, simulations, data analysis, or graphics. Additionally, the program includes
specific families of tools, named toolboxes; which are designed to particular technology
applications and extend the MATLAB® environment capabilities.

This is the program that will be used to simulate mechanically the harvester, using
the Partial Differential Equation Toolbox, which provides functions for solving struc-
tural mechanics, heat transfer, and general PDEs by using FEM. The Total Academic
Headcount license of MATLAB® provided by UPNA has been employed in this work.

In addition, with MATLAB® new codes can be developed in order to perform new
simulations. For example, magnetic and electromagnetic FEM simulations can be
implemented in order to calculate the emf induced in the coil of the harvester. However,
this work is limited to mechanical simulations.

https://es.mathworks.com/products/matlab.html
https://es.mathworks.com/products/matlab.html
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3.2.2.3. Gmsh©

Gmsh© is an open source three-dimensional finite element mesh generator with built-
in processing facilities (https://gmsh.info/). Meshing, or mesh generation, is a pro-
cess that consists on dividing the continuum space into discrete elements. This division
is made by generating a 2D or 3D grid, which discretizes the geometry. Meshing is a
key process in FEM, since the fields (in this case deformation and stresses) are defined
in the nodes of each element. The more elements the mesh has, the more accurate
the results of the numerical simulation will be, but the more resources and time the
computation will require. That is why Gmsh© has been used for obtaining the most
appropriate mesh for the simulations to be accurate and fast.

MATLAB® tools for making a particularized meshing for the geometry are quite
limited, since there are just a few parameters that can be edited: mesh growth rate
(related with the growth of the elements when they are further from the geometry
edges) and maximum and minimum mesh edge length (define the limits of the size of
the elements of the mesh to make it finer or coarser). Gmsh© however provides a wide
number of tools to make an efficient meshing.

3.2.3. Geometry Definition

Figure 3.4: Harvester domains identification.

First of all, the geometry of
the harvester must be defined.
It must be remarked that this
geometry is formed not by one
single body, but by four differ-
ent ones; also called domains
or cells: the harvester main
body, the magnetostrictive ma-
terial, the tip mass and the piece supporting the pick-up coil (used to facilitate the
removal of the wiring from the prototype in future tests), as indicated in Figure 3.4. A
different PDE has to be defined in each domain because each one has its own density,
Young Modulus and Poisson coefficient.

The complete geometry is composed of four different domains. However, in this
work the mechanical simulation is done with just two domains, Ω1 and Ω2 in Figure
3.4, as an initial approximation, since the objective is the design of the vibrating
structure. Though the simulations have not been performed for the complete four-
domain geometry; it has been indicated how the two-domain simulations should be
modified in order to obtain the complete geometry static and dynamic results. The
simulation involving just the U-shaped body and the tip mass is thus a simplification
of the complete four-domain geometry.

https://gmsh.info/
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Figure 3.5 shows the complete geometry defined with no assigned domain to the
pick-up coil itself since it will not be considered in the simulations. In any case, the
pick-up coil would further reduce the resonance frequency since an extra mass is added
to the upper part of the U-shaped body. This way, results are adequate to validate the
design despite not taking the pick-up coil into account.

Figure 3.5: U-shape magnetostrictive vibration energy harvester geometry created with
SolidWorks®.

As it can be seen in Figure 3.1 one part of the lower end of the U-shape harvester
is fixed to the vibration source, but not the whole lower face. When defining the fixed
boundary conditions of the PDE problem, the face in which they will be applied must
be given. Therefore, in order to differentiate between the fixed and the free part in the
lower face; the fixed part has been extruded 0.01 mm (see Figure 3.6). The geometry
file will be saved as a .STEP file in order to be read properly by the mesh generator
software Gmsh©.

Figure 3.6: Detail on the geometry of the fixed end of the harvester (marked in blue).

3.2.4. Meshing of the Harvester Geometry

As it has been previously commented, mesh generation is very important for ob-
taining accurate results as fast as possible using the minimum resources. Codes 3.1
and 3.2 show and explain the code required for obtaining the desired mesh on each
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domain for the two studied geometries. It is mandatory for each domain to have mesh
elements that do not interfere with the ones of the rest of the domains. The domains of
interest where stresses are relevant are the magnetostrictive sheet (these stresses will
be the ones defining the magnetic field variation) and the harvester main body. This
way, these two domains should have a fine mesh, while the tip mass domain can have
a coarser mesh to make the simulation faster. The size of the elements of the mesh of
each domain is defined with the characteristic length. In the case of the geometry with
just two domains, the mesh code is shown in Code 3.1.

Code 3.1: Gmsh© Domain Assignment and Meshing Parameteters for the two-domain geometry
1 // Forces Gmsh to use OpenCascade instead of the native engine
2 SetFactory("OpenCASCADE");
3

4 // Load the body without interferences between the different volumes.
5 v() = ShapeFromFile("Harvester.step");
6 BooleanFragments{ Volume{v()}; Delete; }{}
7 // Here it is defined a characteristic length for the meshing of each of the
8 // volumes. For example for Volume 1 the characteristic length is defined to
9 // be 0.2 mm.

10 Characteristic Length{ PointsOf{Volume{1};} } = 0.2;
11 Characteristic Length{ PointsOf{Volume{2};} } = 0.5;
12

13 // Finally the physical groups are exported (necessary to be treated by MATLAB
14 // as domains). In general: Physical Volume(X) = {Y1,Y2,...}; where Y are the
15 // numbers that Gmsh assigns to each volume (can be seen with
16 // Tools/Options/Geometry/Visibility: Volume Label ON); and X is the number
17 // wanted to be considered by MATLAB for that domain.
18

19 // To the volume that Gmsh calls 1 it is assigned domain 1.
20 Physical Volume(1) = {1}; // U-shaped main body
21 Physical Volume(2) = {2}; // Tip mass

In the case of the four-domain geometry, Code 3.1 is modified so that the charac-
teristic length definition and volume assignation is done for the four involved domains,
as shown in Code 3.2.

Code 3.2: Gmsh© Domain Assignment and Meshing Parameteters for the four-domain geometry
1 // Forces Gmsh to use OpenCascade instead of the native engine
2 SetFactory("OpenCASCADE");
3

4 // Load the body without interferences between the different volumes.
5 v() = ShapeFromFile("Harvester.step");
6 BooleanFragments{ Volume{v()}; Delete; }{}
7 // Here it is defined a characteristic length for the meshing of each of the
8 // volumes.
9 Characteristic Length{ PointsOf{Volume{1}; Volume{3}; Volume{4};} } = 0.2;

10 Characteristic Length{ PointsOf{Volume{2};} } = 0.5;
11
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12 // Finally, physical groups are exported.
13 Physical Volume(3) = {1}; // Magnetostrictive material
14 Physical Volume(2) = {2}; // Tip mass
15 Physical Volume(4) = {3}; // Wiring piece
16 Physical Volume(1) = {4}; // U-shaped main body

In order for MATLAB® to consider the exported geometry as different domains,
these must be defined as “physical volumes” in Gmsh©. The association between the
volumes (defined automatically by the mesh generation program) and the physical
volumes (volumes considered by MATLAB®) can be seen in Figure 3.7 for both studied
geometries.

(a)

(b)

Figure 3.7: (a) Volumes and physical volumes for the two-domain geometry. (b) Volumes
and physical volumes for the four-domain geometry.

By loading the .geo files (codes 3.1 and 3.2) in Gmsh© all the physical volumes
and meshing parameters are defined. Thereafter, the “Mesh” module can be used to
generate a 3D tetrahedral element mesh on the geometry, obtaining the results shown
in Figure 3.8. The nodes and elements data is exported to MATLAB® as a .m file. The
achieved meshing has bigger elements in the tip mass, which is the domain with the
lower interest for the numerical simulations, while the U-shaped main body and the
magnetostrictive sheet have a fine mesh. It is considered to be a good trade-off between
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the simulations accuracy and the employed time and resources, since by making the
meshing finer, the computer might run out of RAM memory during the computation.

(a)

(b)

Figure 3.8: (a) Mesh generated for the two-domain geometry. (b) Mesh generated for the
four-domain geometry.

The MATLAB® scripts are shown and explained in Appendix C. In Code C.3 it has
been included the option to use the MATLAB® meshing in case it is desired. Figure
3.9 compares the meshes generated by MATLAB® and Gmsh© for the four-domain
geometry.

(a) (b)

Figure 3.9: (a) Mesh generated by MATLAB®. (b) Mesh generated by Gmsh©.
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3.2.5. PDE Problem Definition

The PDE problem definition is exposed for the initial simulation of the two-domain
geometry that will enable to validate the U-shaped body design. Code C.1 creates a
PDE model and loads the nodes and elements from Gmsh (Gmsh_mesh_data.m file) to
create the geometry. In order to check if domains have been exported correctly and
the face numbering needed for defining the boundary conditions, Figure 3.10 is shown.

(a) (b)

Figure 3.10: (a) Harvester volume domain identification (dimensions in m). (b) Harvester
face identification (dimensions in m).

Code C.2 shows the definition of the material coefficients for each domain and the
definition of the boundary condition. The properties for the materials conforming each
of the domains are summarized in Table 3.1 [23, 24, 25].

Table 3.1: Materials mechanical properties [23, 24, 25].
Gray cast iron Ferrite Galfenol PLA

ρ (kg/m3) 7200 7870 7800 1240
E (GPa) 110 200 59 3.5
ν 0.28 0.291 0.44 0.36

The tip mass is a parameter that will enable to tune the resonance frequency of
the prototype. It is desired that this parameter can be modified in an easy way in the
simulations, without the need to change the tip mass volume. Therefore, a fictitious
density is calculated for the tip mass as the ratio of the tip mass, m, and the volume V
of the elements conforming the domain of the tip mass (domain 2 in (a) Figure 3.10),
by using the function calc_vol_average.m given in Code C.11. The value for the
gravity acceleration, g, is considered to be 9.81 m/s2. The c matrices are calculated for
each material using the function elasticityC3D.m included in the Partial Differential
Equation Toolbox. Equations 3.1a and 3.1b show the form of the PDE problems and
PDE eigenvalue problems respectively that MATLAB® is able to solve.
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m
∂2u

∂t2
+ d

∂u

∂t
−∇ · (c∇u) + au = f (3.1a)

−∇ · (c∇u) + au = λmu (3.1b)

Comparing equations 3.1a and 3.1b with equations 2.8, 2.11 and 2.12 on Section 2.4,
the coefficients a and d are null, whereas m corresponds to the mass density and c to
the matrix defined in Equation 2.7. In Equation 3.1b, λ corresponds to the eigenvalues
of the problem, or ω2

n by comparison with Equation 2.12. Coefficients m, d, c, a and
f can be defined at each domain with function specifyCoefficients.m as shown
in Code C.2 (the coefficients specified in this code correspond to the ones needed to
calculate the resonance frequencies, as it can be noticed by comparing Equations 2.12
and 3.1b).

There is a fixed boundary condition in the face attached to the vibration source.
This is a support boundary condition (u) of Dirichlet type, since the solution values
of the displacement vector u are specified to be null. The fixed face can be seen
in Figure 3.10 to be face F2. This Dirichlet condition is imposed with the function
applyBoundaryCondition.m as shown in Code C.2.

3.2.6. Resonance Frequencies and Modes of Vibration

The resonance frequencies and modes of vibration are calculated in order to check
if the initial design is optimal, that is, the main eigenfrequency is close to 100 Hz. In
Code C.4 the natural frequencies are calculated as the square roots of the eigenvalues
since, as it was explained in Section 2.4.3.1, ω2

n = λ. The frequencies corresponding
to the first six modes of vibration corresponding to the U-shaped harvester vibrant
magnetic structure and a tip mass of 0.4781 g (mass of the ferrite magnet that has
been used in the experimental part explained in Chapter 4), are displayed in Table 3.2.

Table 3.2: Frequencies of resonance corresponding to first six modes of vibration.

Mode of vibration Frequency (Hz)
1 111.69
2 180.93
3 250.07
4 1010.9
5 1040.1
6 1721.7
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Code C.5 creates an animation of the first six modes of vibration of the harvester to
see the shapes and how the harvester deforms in each vibration mode. For this purpose,
function animateHarvester.m (see Code C.10) has been used to calculate each of the
frames of the animation. This function basically creates an animation whose frames
correspond to the deformation of the nodes at each time. The color scale indicates the
deformation modulus normalized with respect to the maximum one for each mode of
vibration, as indicated in Equation 3.2.

Normalized deformation modulus =
√
u2
x + u2

y + u2
z√

u2
x + u2

y + u2
zmax

(3.2)

This magnitude has been scaled in order for it to be perceptible in the graph. To
accelerate the computation process, a coarser mesh than the one employed in the other
simulations has been used. This can be done due to the fact in this case the analysis
is qualitative and not quantitative, so accuracy is not as important. Figure 3.11 shows
a single frame of the animation of the harvester modes of vibration.

Figure 3.11: Frame of the animation of the harvester modes of vibration.

For the considered design, the natural frequency corresponding to the first mode of
vibration is in the desired range, close to 100 Hz. The justification for considering this
design optimal is its low manufacturing cost, its simplicity and that it is resonant in
the range of frequencies where most of the industrial processes take place as explained
in Section 2.2. The fact that the frequency is higher than 100 Hz is not an issue
because after including the additional elements of the future harvester, the resonance
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frequency will lower since mass would be added to the upper part of the U-shaped
body. Numerical simulations will determine if the displacements and the stresses are
adequate for the future harvester.

3.2.7. Static Simulation (Gravity Load)

In order to simulate the static case, that is, the harvester being subjected just to
gravity acceleration, Code C.6 is implemented. In this case, the vector coefficient f
is defined by comparing Equations 2.8 and 3.1b as the product of density and gravity.
There is a different volume forces vector for each of the domains, since each of them
has a different density. The vector coefficient f has a single negative component in the
z direction.

Afterwards, stresses are calculated by using the function evaluateCGradient.m
from the previously calculated displacement vectors, u. However, σxx is the component
of interest, since it is the one coupled with the magnetic flux into the magnetostrictive
material. Figure 3.12 shows the displacement in the z direction in millimeters and σxx

stresses in MPa under static loading.

(a)

(b)

Figure 3.12: (a) Displacement in z direction (mm) under static loading for the two-domain
geometry. (b) σxx (MPa) under static loading for the two-domain geometry.
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It can be observed that the obtained displacements are valid for the static case
(deformation by gravity) since they will produce the upper part to go down a negligible
length in comparison with the harvester structure dimensions (a few hundredths of
millimeter). Therefore, there is no risk that the upper U-shaped main body part
enters in contact with the lower part since they are separated by 5 mm.

With respect to the stresses, it is observed that the maximum σxx is produced in
the area close to the bent part of the U-shaped structure. This means that in order to
optimize the future harvester and maximize the stresses transmitted to the active or
magnetostrictive material, and thus the power output of the device, the active material
sheet should be located close to the bent part of the U-shaped body.

3.2.8. Dynamic Simulation (Harmonic Load)

For the dynamic simulation (see Code C.8), an oscillatory acceleration will be gen-
erated by the vibration source. Since the lower part of the U-shaped main body is fixed
to an oscillatory acceleration source, the component will be moving in a non-inertial
system with an oscillatory inertial force. This inertial force will be a vector whose only
component different from zero will be the z component. This z component will have
an amplitude given by the product of the density and the acceleration of the vibration
source (in this case it will be considered to be 10 m/s2 because its the typical value for
industrial machinery vibrations [9]). Therefore, in Code C.8 it is defined the inertial
force amplitude vector for each of the domains and the frequency at which the source
is vibrating (the resonance frequency of the first mode close to 100 Hz, since it is the
frequency for which the vibrating structure has been designed to obtain an optimal
performance).

In the case of the dynamic simulation, the damping phenomenon must be taken
into account, since if it did not exist, the displacements and stresses would tend to
infinity as the system approached the resonance frequency. This damping effect does
not affect the resonance frequencies and modes of vibration and the results of the
static simulation. However, they do affect the dynamic simulation results. As it was
exposed in Section 2.4.3.2, Rayleigh coefficients should be determined empirically and
then introduced into the simulation to calculate the displacements and the stresses.
This has been made in Code C.7, by comparing the results obtained in the laboratory
with the ones of the simulation to determine the parameters that provide the best
fitting between both results. These parameters that have been determined are mainly
the two Rayleigh damping coefficients, α and β. In addition, the Young Modulus of
the U-shaped main body, E, has been slightly modified from the initial supposed value
from [23]. Chapter 5 presents the results since empirical data is needed for taking into
account the damping phenomenon.
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In Code C.8 it can be seen how the coefficients have been specified by comparing
Equations 2.11 and 3.1b in an analogous way to what it was done in Section 3.2.5.

In the case of the four-domain geometry not simulated in this work, the stresses
occurring in the magnetostrictive material sheet are determinant for the future magne-
tostrictive harvester performance. Thus, in Appendix B it has been included an expla-
nation on the two factors that would determine the optimal magnetostrictive material
to be included in the future magnetostrictive harvester: the average Galfenol stresses
under vibration and its magnetization change with vibration stresses depending on the
applied manufacturing annealing stress.





Chapter 4

Harvester Vibrating Magnetic
Structure Characterization

In the present chapter, the physical construction of the magnetic vibrating structure
modeled in the simulations is developed. Besides, the different devices and the method-
ology followed for its resonance frequency and amplitude of vibration characterization
are described.

4.1. U-shaped Main Body Characterization

After the geometry definition described in the previous chapter (see the technical
drawing in Appendix A), the vibrating magnetic structure was characterized (U-shaped
main body) by the experimental determination of the frequency of resonance and the
amplitude of vibration.

The U-shaped main body of the harvester has been manufactured by GRUPO IAM
from a 100% gray iron sheet provided by Hierros Landaben. This U-shaped main
body is made of iron because a ferromagnetic material is needed in order to close the
magnetic circuit generated by the bias magnet as it was explained in Section 3.1.

A total of 10 equal pieces were manufactured from a 0.5 mm in thickness iron plate
by cutting it with a Water Jet Cutting (WJC) machine in a rectangular shape of
dimensions 88.5 × 4 mm. Then the pieces were bent with an external radius of 3 mm
according to Plan 1.01 in Appendix A to get the desired shape by using a bending
tool. The optimal simulation results of frequency and displacements were obtained for
a U-shaped body with a short side length of 32 mm and a long side length of 47 mm,
similar to the dimensions proposed by Ueno in [20].

Figure 4.1 shows a picture of the U-shaped iron main body taken in the laboratory.
During the performance of the experiments, it was observed that this component was
susceptible to pitting corrosion due to ambient moisture (noticeable in the figure).

37
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Figure 4.1: U-shaped iron main body.

4.2. Laboratory Material

In the following section, it is exposed the different equipment that has been employed
to characterize the prototype. Two main aspects have been addressed:

• Generation of the ambient vibrations.

• Characterization of the U-shaped body vibration: frequency of resonance and
amplitude of vibration determination.

In order to clarify the disposal of the elements conforming the laboratory experiment,
a numerated diagram is shown in Figure 4.2. The different wire connections between
the laboratory equipment have not been represented for clarity reasons but will be
described in the corresponding subsections and are resumed in Figure 4.3.

Figure 4.2: Laboratory setup.
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Figure 4.3: Laboratory setup connections.

4.2.1. Generation of Ambient Vibration

In this subsection the laboratory equipment used for generating the ambient vibra-
tion is described: shaker, function generator, amplifier, ammeter, accelerometer and
3D-printed support.

4.2.1.1. Shaker

This device (LDS® V201 from Brüel & Kjær) simulates the vibration source, and its
mission is to transmit the mechanical ambient vibrations to the U-shaped body under
the assumption of a simple harmonic oscillation motion of peak amplitude Y0. This
shaker is designed for fatigue and resonance testing, modal and structural analyses,
and vibration screening of small components over a wide frequency range, from 5 to
13000 Hz. Figure 4.4 shows the shaker model used in the experimental setup.

Figure 4.4: LDS® V201 permanent magnet shaker.
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4.2.1.2. Function Generator

This device (AFG310 SONY Tektronix Arbitrary Function Generator) generates
the alternating current (AC) signal that powers and controls the movement of the
shaker. A sinusoidal signal is chosen, leading to the already mentioned simple harmonic
motion of the harvester structure. This device permits to easily select the frequency
of vibration. Nonetheless, this instrument has no power enough to feed the shaker, so
an AC amplifier is required. Figure 4.5 shows function generator model used in the
experimental setup.

Figure 4.5: AFG310 SONY Tektronix Arbitrary Function Generator.

4.2.1.3. AC Amplifier

This amplifier (LDS® LPA100 from Brüel & Kjær) enables to provide with the
sufficient power to the shaker. The amplification can be modified with this device
thanks to a rotating button. The screen of the device shows the voltage amplitude
as well as the AC current Root Mean Square (RMS) value, but with poor accuracy.
That is why an ammeter is connected in series before the connection to the shaker.
The connection of the amplifier to the ammeter and to the ground of the shaker is
made thanks to a coaxial cable. Figure 4.6 shows the amplifier model used in the
experimental setup.

Figure 4.6: LDS® LPA100 linear power amplifier.
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4.2.1.4. Ammeter

In order to measure with accuracy the AC RMS current, IRMS, that is being sup-
plied to the shaker, a 34401A Agilent multimeter is employed. The ammeter will be
connected in series between the amplifier and the shaker. Figure 4.7 shows the ammeter
model used in the experimental setup.

Figure 4.7: 34401A Agilent multimeter.

4.2.1.5. Accelerometer

The device (TLD352C33 from PCB Piezotronics) is an ICP® piezoelectric sensor
used to measure the acceleration of the shaker during vibration. The output is an
AC peak-to-peak voltage signal, VApp (mV), measured with an oscilloscope (explained
in Section 4.2.2.3). This voltage signal can be translated into a conventional peak
acceleration, A0 (m/s2), with the conversion factor supplied by the manufacturer, 100
mV (peak-to-peak) = 9.81 m/s2 by the expression A0(m/s2) = VApp(mV) · 1

2
· 9.81(m/s2)

100(mV)

(halved to obtain the peak value). Figure 4.4 shows the accelerometer used in the
experimental setup.

Figure 4.8: ICP® sensor and 480C02 ICP® signal conditioner.

4.2.1.6. 3D-printed Harvester Support

Since the U-shaped body can not be directly fixed to the shaker, a homemade
support is designed. This component also permits to fix the accelerometer probe on its
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top, so that the acceleration during harvester vibration can be properly measured. The
technical drawings of the designed support can be seen in the Appendix A in Plans
2.00, 2.01 and 2.02.

The support is comprised of two different pieces of polylactic acid composite (PLA)
printed with a 3D printer (BQ Witbox 2). The lower piece is threaded to the shaker
by a conical hole. This piece counts with a thin groove (0.4 mm in depth). The upper
piece counts with a similar groove so the U-shaped body can be inserted in between.
Finally, the two pieces are fixed by three plastic nylon bolts. Figure 4.9 shows some
details of the SolidWorks® design of the upper and lower parts as well as an the result
of the assembly after the 3D-printing.

Figure 4.9: 3D-printed support details.

4.2.2. Characterization of U-shaped Body Vibration

To characterize the amplitude of vibration of the U-shaped body, a Giant Magne-
toimpedance (GMI) based magnetic sensor is employed. In this section, the principle
of operation of the sensor and the rest of the devices used for the vibration character-
ization are introduced.

4.2.2.1. Vibration Magnetic Sensor

The sensor developed for the amplitude of vibration characterization is based on
the Giant Magnetoimpedance (GMI) effect. This effect consists on huge changes in the
high-frequency electric impedance of a soft magnetic conductor under the action of an
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external magnetic field [26]. A typical curve of impedance versus external magnetic
field is shown in Figure 4.10 [26]. As it can be observed, the larger the magnetic field
is, the lower the impedance will be; observing a maximum at zero external magnetic
field.

Figure 4.10: Electric impedance versus external magnetic field [26].

As the sensor nucleus, an amorphous wire obtained by in-rotating water quenching
technique was used. The wire, with nominal composition Co66Fe12Si13B15Cr4 (3 cm in
length and mean diameter of 90 µm), was excited under conditions that optimize its
GMI effect, f = 300 kHz, Ipp =15 mA. The wire is fixed to a methacrylate piece in
order to ease its handling, as it can be seen in Figure 4.11. This methacrylate piece
is sustained over the harvester tip magnet with the aid of a support that enables to
regulate the distance between the ferrite magnet and the wire.

Figure 4.11: Displacement sensor.

To characterize the amplitude of the vibra-
tions, a cylindrical ferrite magnet (mass of
0.4781 g, diameter of 4 mm and height of 4
mm) is attached to the U-shaped vibrating
body. The variations in the relative position,
x (see Figure 4.11), of the magnet with respect
to the sensor, lead to different magnetic fields
acting on the sensor and to the corresponding
proportional changes in the impedance of the
sensor, permitting the U-shaped body ampli-
tude of oscillation determination, X0. This
motion can be approximated to a simple har-
monic motion as:

x(t) = X0 cos(ωt+ ϕ) (4.1)
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Where X0 is the peak amplitude at any moment of the U vibrating body and ω = 2πf
is the angular frequency and ϕ the initial phase of the oscillation. The acceleration of
the vibration of the U-shaped body can be easily obtained from the position variation,
leading to Equation 4.2:

a(t) = −X0 ω
2 cos(ωt+ ϕ) (4.2)

Far from the resonance both the shaker and the U-shaped body oscillate under
the same acceleration and so the same amplitude Y0 = X0. This circumstance can be
employed for the estimation of X0 when the vibration of both systems is simultaneously
measured. Consequently, the correlation between X0 and the experimental acceleration
A0 (m/s2), obtained from the measurements of VApp (mV) with the accelerometer, can
be estimated from Equation 4.3.

X0 = Y0 =

∣∣∣∣−A0

ω2

∣∣∣∣ (4.3)

4.2.2.2. Sensor Circuit Board

As a result of the vibration, the periodic changes in the sensor impedance lead
to an AM (Amplitude Modulation) modulated signal (see Figure 4.12) that must be
deconvoluted in such a way that its amplitude, Venv+ and/or Venv− is proportional to x.
The minimum on Venv+ or Venv− represents the moment in which the distance between
the magnet and the sensor is minimum, while the maximum of the same signal will
represent the maximum distance. For this purpose, a homemade electronic interface
was used [26].

Figure 4.12: Signal deconvolution diagram.

Figure 4.13 shows the schematics of the analog homemade electronic interface. The
electronic interface was powered with a ±15 V DC power supply.
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Figure 4.13: Analog homemade electronic interface schematic in [26].

Two different stages can be found:

• Sensor excitement: It is excited with a 300 kHz sinusoidal signal (function genera-
tor Standford Research Systems DS345, Vin) in series with a resistor, R, obtaining
a current, Ipp = Vin

R
. The sensor disposition permits a constant current Ipp to

flow through it, independently of its impedance change, thanks to an Operational
Amplifier (OA).

• Demodulation stage: This stage is beyond the objectives of this work and con-
stitutes a general scheme in the AM demodulation of signals. Initially, an am-
plification of the sensor signal (see Figure 4.13) is developed. Then, diodes are
used to estimate the values of Venv+ and Venv−. Subsequently, a high-pass filter
eliminates the DC component of enveloping signals, that are finally subtracted
and amplified, resulting in the final peak-to-peak output signal, Vout.

Figure 4.14 shows a picture of the analog homemade electronic interface.

Figure 4.14: Analog homemade electronic interface in [26].
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4.2.2.3. Oscilloscope

The oscilloscope employed is the model MDO 3024 (Mixed Domain Oscilloscope) of
Tektronix, with a bandwidth of 200 MHz and a sample rate of 5 GS/s, shown in Figure
4.15. The oscilloscope will be used to analyze two signals during the characterization
of the resonance frequency of the harvester: the displacement signal coming from the
displacement sensor circuit board, Vout (channel 1, in yellow) and the acceleration signal
coming from the accelerometer, VApp (channel 2, in blue). In both cases, the associated
peak signals can be calculated by halving these output peak-to-peak signal values.

Figure 4.15: Tektronix MDO3024 Oscilloscope.

4.3. Experimental Measurements

With the described experimental setup, different measurements are made to char-
acterize the vibrant magnetic structure and to validate its use for constructing magne-
tostrictive harvesters. First of all, the optimal distance, in terms of sensor sensitivity,
between the sensor and the vibrating structure was determined. Then, with the help of
the accelerometer, the displacement sensor is calibrated permitting the translation of
the measured output signal into amplitude of vibration of the U-shaped body. Finally,
different frequency analyses are made as the components are added to the harvester to
check the simulation results.

4.3.1. Determination of the Optimal Tip-Sensor Distance

The initial step is to optimize the sensitivity of the sensor during the detection
process. The effect of the distance between the magnet attached to the U-shaped body
and the amorphous wire in the sensor response was analyzed in a qualitative way.



4.3. Experimental Measurements 47

Under a fixed frequency and amplitude of vibration, the sensor height was varied
until the maximum output signal Vout was found. A distance of d = 1.35 cm resulted
as the optimum one. This distance was calculated from two direct measurements taken
with a height caliber (model H4-30 from Mitutoyo): the distance from the sensor tip
to the desk, dsens = 17.46 cm, and the distance from the top of the magnet of the
harvester to the desk, dmagnet = 16.11 cm. This distance between the sensor and the
magnet was not modified along the whole process of experimentation.

4.3.2. Calibration of the Displacement Sensor

In second place, the displacement sensor was calibrated. This stage aims to corre-
late the variations of Vout with the amplitude of oscillation of the vibrating U-shaped
structure, X0, as explained in Section 4.2.2.1. The frequency was fixed at f = 10 Hz
to ensure that no resonance was present and the amplitude of oscillation of the shaker
fulfills Y0 = X0. Then, the vibration of the system was simultaneously characterized
by the accelerometer and the displacement sensor under increasing values of IRMS from
the amplifier. Accordingly, the peak-to-peak voltage values of the sensor, Vout, and the
accelerometer, VApp, signals were registered.

The conversion factor of the accelerometer permits to translate VApp (in mV) into
actual peak acceleration, A0. This way, the acceleration peak amplitude A0 that the
shaker is transmitting to the U-shaped body can be calculated in m/s2 for each of the
measurements with expression 4.4.

A0 = VApp ·
9.81

200
(4.4)

Note: Peak values are used for direct comparison with simulated data in Chapter 5.

The amplitude of vibration of the shaker and the U-shaped body, can be obtained from
expression 4.5.

X0 = Y0 =

∣∣∣∣−A0

ω2

∣∣∣∣ = ∣∣∣∣− A0

(2πf)2

∣∣∣∣ (4.5)

This way, by using equation 4.5, since both f and A0 are known, the amplitude of
oscillation of the U-shaped body can be determined. With these data, the calibration
results after plotting the oscillation amplitude X0 = Y0 in millimeters versus the sensor
output signal amplitude Vout in volts. Laboratory measurements related with the sensor
calibration are resumed in Table 4.1, and Figure 4.16 shows the calibration graph.
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Table 4.1: Calibration of the displacement sensor.
f (Hz) IRMS (mA) Vout (mV) VApp (mV) A0 (m/s2) X0 = Y0 (mm)

10

20.75 435 5.34 0.2619 0.06635
40.25 512 7.65 0.3752 0.09505
60.41 585 11.9 0.5837 0.1479
79.70 665 15.7 0.7701 0.1951
100.85 750 19.9 0.9761 0.2473
120.65 835 23.8 1.1674 0.2957
139.65 908 27.9 1.3685 0.3466
160.93 1020 33.4 1.6383 0.4150
179.66 1100 36.6 1.7952 0.4547
200.11 1200 41.6 2.0405 0.5169
220.42 1290 47.9 2.3495 0.5951
241.78 1410 54.3 2.6634 0.6747
259.54 1510 60.4 2.9626 0.7504
281.57 1590 66.8 3.2765 0.8300
300.15 1680 72.9 3.5757 0.9058
319.49 1810 79.8 3.9142 0.9915
341.85 1900 87.2 4.2772 1.0834
359.15 1960 92.6 4.5420 1.1505
380.25 2110 99.6 4.8854 1.2375
400.74 2160 107.0 5.2484 1.3294
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Figure 4.16: Calibration of the displacements sensor.
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The observed relationship between the two magnitudes is linear, and the best-fit
line obtained by using least-squares method is shown in equation 4.6 with a regression
coefficient R2 = 0.9932.

X0 = 0.7223Vout − 0.3020 (4.6)

Equation 4.6 permits to easily translate the displacement sensor output peak-to-
peak signal Vout into the oscillation peak amplitude of the U-shaped body, X0. This
calibration is a general result and can be employed in later experiments for the ampli-
tude of vibration X0 for any frequency, even at resonance.

It can be appreciated the calibration line does not pass through zero. This offset
is due to the presence of the diodes with a knee voltage of 0.7 V in the electronic
interface (see Figure 4.13), that make it necessary to surpass a certain vibration value
to start obtaining the displacement sensor voltage signal. This is an issue that could be
diminished by adjusting the preamplification of the sensor signal so that less oscillation
amplitude is necessary to obtain the output signal. Nonetheless, this is out of the scope
of this project and will be analyzed in future work.





Chapter 5

Results and Discussion

The main objective of the work is to determine the frequency of resonance of the
U-shaped structure during vibration. Accordingly, the amplitude of the vibrating
structure is registered under a constant shaker oscillation amplitude value, Y0, for dif-
ferent frequencies of oscillation. This way, the resultant vibrating structure oscillation
amplitude, X0, can be compared under similar measurement conditions, permitting the
determination of the frequency of resonance, since the shaker oscillation is the same
for all analyzed frequencies.

In spite of this, different resonance analyses are done in order to know how the
addition of the different elements that comprise a vibrational harvester may affect
to the frequency of resonance. After the described initial analysis for the U-shaped
harvester body with a tip mass constituted by the ferrite magnet, the effect of the
addition of the Galfenol sheet and a homemade 3D-printed piece to incorporate the
collecting pick-up coil is done. Finally, an additional non-magnetic tip mass is added
to check how the value of the frequency of resonance is affected and so, the possibility
of tuning it depending on the desired application. For each of these experiments, a
table with the collected data is presented, as well as a graph plotting the structure
vibration displacement amplitude, X0, versus the frequency, f .

5.1. U-shaped Harvester Body

As mentioned, it is relevant to compare X0 values of the U-shaped body for a
constant shaker oscillation amplitude, taken to be Y0 ≈ 0.1 mm. To do that, the value of
the experimental parameter, VApp (mV), has to be properly adjusted for each analyzed
frequency. This is done by modifying IRMS with the button of the AC amplifier until
VApp reaches the desired value, so that the values of Y0 are approximately equal for all
the frequencies. Equation 5.1, obtained from the combination of expressions 4.4 and
4.5, permits the calculation of VApp in each case.

51



52 Results and Discussion

VApp =
200

9.81

Y0 (2πf)
2

1000
(5.1)

Under this procedure, measurements resumed in Table 5.1 are obtained for frequen-
cies between 40 and 150 Hz. X0 is calculated from Equation 4.6.

Table 5.1: Data from the frequency sweep analysis of the U-shaped harvester body.
f (Hz) IRMS (mA) Vout (mV) VApp (mV) A0 (m/s2) Y0 (mm) X0 (mm)

40 14.35 460 130 6.38 0.1009 0.0303

50 44.82 525 206 10.10 0.1024 0.0772

60 82.41 520 306 15.01 0.1056 0.0736

70 130.79 553 409 20.06 0.1037 0.0974

80 186.54 597 527 25.85 0.1023 0.1292

90 252.66 740 670 32.86 0.1028 0.2325

100 341.44 1210 835 40.96 0.1037 0.5720

105 412.48 2130 934 45.81 0.1053 1.2366

110 489.48 3710 1010 49.54 0.1037 2.3779

115 486.33 4650 1050 51.50 0.0986 3.0569

117 450.87 3128 1145 56.16 0.1039 1.9575

120 384.59 1710 1190 58.37 0.1027 0.9332

125 448.71 854 1262 61.90 0.1004 0.3149

130 503.62 540 1400 68.67 0.1029 0.0880

140 616.64 488 1640 80.44 0.1040 0.0505

150 716.04 542 1880 92.21 0.1038 0.0895

In order to analyze at which frequency the resonance peak is located, X0 is plotted
versus frequency. To have an estimated curve from the experimental data, it is fitted
to a Lorentz curve by using MATLAB®, whose expression is given in Equation 5.2. In
this expression y0 is the offset of the curve, xc is the center, w is the width and A is
the area. In Figure 5.1 it can be seen a value of 113 Hz is obtained for the resonance
frequency from the fitting procedure, close to the desired 100 Hz.

y = y0 +
2A

π

w

4(x− xc)2 + w2
(5.2)
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Figure 5.1: Frequency sweep of the U-shaped harvester body.

5.2. Potential Harvester Construction

Although this work is focused on the design of the U-shaped main body, its po-
tential application is linked to the construction of a magnetostrictive harvester. The
harvester implementation requires the addition of different elements to the analyzed
structure, basically the magnetostrictive layer and the pick-up coil fixing piece. De-
spite the performance of a potential harvester is not an objective of this work (and not
characterized), the effect of the addition of these elements to the U-shaped body per-
formance is experimentally analyzed. Analogously to the previous section, their effect
on the frequency and amplitude of vibration is studied. The possibility of tunning the
frequency of resonance with the addition of “tip masses” was also examined.

5.2.1. U-shaped Harvester Body with Galfenol Sheet and
3D-printed Piece

In this section it is analyzed the effect of the incorporation of the magnetostrictive
material sheet and the 3D-printed wiring component to the behavior of the harvester
structure. A brief description of both elements is performed.
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5.2.1.1. Galfenol Sheet

The magnetostrictive material selected for constructing the harvester was Galfenol
(Fe81.6Ga18.4) due to its proper balance between cost and performance (see properties
in Table 2.2). Several 20 × 4 × 0.5 mm pieces were supplied by TdVib LLC. Two
different types of Galfenol sheets were purchased: as-cast, and stress-annealed under a
compressive stress of 20 MPa.

The optimal Galfenol sheet selection for the future harvester is explained in Ap-
pendix B. This decision does not have any implications in the present work since it
does not affect the mechanical properties of the vibrant magnetic structure. However,
it is a key factor in the future harvester performance that would integrate the vibrant
U-shaped structure developed in this project. Figure 5.2 shows one of the provided
as-cast Galfenol pieces.

Figure 5.2: As-cast Galfenol sheet.

To fix the Galfenol sheet to the U-shaped main body, an epoxy adhesive (Rapid
Araldite® from CEYS) was used. The fixation with this adhesive will guarantee the
transmission of stresses between the two components for a wide range of stresses and
temperatures, making the joint highly durable. Figure 5.3 shows the assembly of the
Galfenol sheet on the U-shaped body next to a U-shaped body without the magne-
tostrictive layer.

Figure 5.3: U-shaped iron body with and without glued Galfenol sheet.

It is noted that the Galfenol layer has been glued as close as possible to the curved
part of the U-shaped main body due to the fact it is in this place that the higher
stresses will occur in a similar way to what it happens in a clamped beam (see stress
simulation results in sections 3.2.7 and 5.3).
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5.2.1.2. Copper Wiring

In order to easy the copper wiring assembly in the harvester, this wiring will be
made on a Polylactic Acid (PLA) 3D-printed piece whose dimensions are indicated in
Plan 1.03 in Appendix A. This way, the wiring could be easily located and retired from
the harvester assembly. Figure 5.4 shows the 3D-printed piece around which there will
be between 2000 and 3000 coil turns of a 0.05 mm in diameter copper wire.

Figure 5.4: U-shaped body with Galfenol sheet and 3D-printed wiring piece.

5.2.1.3. Resonance Analysis

Analogously to Section 5.1, after assembling the Galfenol sheet to the U-shape and
locating the 3D-printed piece, a second resonance analysis is done. Figure 5.5 shows
the visible resonant vibration of the structure with the attached elements during the
laboratory experiment.

Figure 5.5: Structure body with Galfenol sheet and 3D-printed piece oscillating in reso-
nance.

Table 5.2 shows the data gathered from the frequency sweep and Figure 5.6 presents
the obtained results. The resonance peak is observed at a frequency of 111.5 Hz, a
slightly lower frequency than the one observed in Section 5.1. This lower frequency is
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justified by the fact that some mass has been added to the upper part of the U-shaped
structure. Nonetheless, this resonance frequency change is not very significant due to
the low weight of the Galfenol sheet and the PLA 3D-printed piece.

Table 5.2: Data from the frequency sweep analysis of the U-shaped harvester body with
Galfenol sheet and 3D-printed piece.

f (Hz) IRMS (mA) Vout (mV) VApp (mV) A0 (m/s2) Y0 (mm) X0 (mm)

40 24.88 384 128 6.28 0.0994 -0.0246

50 48.60 425 220 10.79 0.1093 0.0050

60 82.87 416 312 15.30 0.1077 -0.0015

70 130.95 480 420 20.60 0.1065 0.0447

80 185.87 582 536 26.29 0.1041 0.1184

90 251.13 712 680 33.35 0.1043 0.2123

100 319.46 1010 810 39.73 0.1006 0.4275

105 310.73 1520 890 43.65 0.1003 0.7959

106 320.65 1740 936 45.91 0.1035 0.9549

107 328.92 2040 952 46.70 0.1033 1.1716

108 335.52 2520 960 47.09 0.1023 1.5183

109 358.02 3640 984 48.27 0.1029 2.3273

110 404.48 5520 968 47.48 0.0994 3.6853

111 415.92 7240 1084 53.17 0.1093 4.9277

112 423.21 6880 1072 52.58 0.1062 4.6677

113 425.61 5920 1040 51.01 0.1012 3.9742

114 427.46 3520 1072 52.58 0.1025 2.2406

115 435.79 3160 1072 52.58 0.1007 1.9806

116 438.65 2640 1152 56.51 0.1064 1.6050

117 442.12 1653 1180 57.88 0.1071 0.8920

120 453.78 980 1180 57.88 0.1018 0.4059

130 490.14 608 1460 71.61 0.1073 0.1372

140 599.88 464 1660 81.42 0.1052 0.0331

150 736.11 424 1980 97.12 0.1093 0.0043
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Figure 5.6: Frequency sweep of the U-shaped harvester body with Galfenol sheet and 3D-
printed piece.

5.2.2. U-shaped Harvester Body with Galfenol Sheet, 3D-printed
Piece and Additional Tip Mass

In this section it is analyzed how the incorporation of an additional mass affects the
behavior of the harvester structure in terms of the possible variation of the frequency
of resonance.

5.2.2.1. Tip Mass

The tip mass is the additional element which is added in the upper edge of the
U-shaped body to tune its frequency of resonance (see Figure 3.1). As an initial tip
mass the ferrite magnet was used. It is important to recall that this magnet permits
the estimation of X0 by the GMI-based magnetic sensor.

Additional mass was added to the prototype in order to characterize the structure
with this additional element and evaluate the tuning capabilities. A brass nut with
a mass of 2.1972 g was fixed to the tip of the prototype with adhesive tape. This
particular element was selected due to the fact it has an inner hole into which the
ferrite magnet enters, and because it is made of a non-ferromagnetic material, so it
does not affect the vibration magnetic sensor measurements. Figure 5.7 shows two
pictures of the prototype with the additional tip mass.
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Figure 5.7: Structure body with Galfenol sheet, 3D-printed piece and additional tip mass.

5.2.2.2. Resonance Analysis

Analogously to Section 5.1, a third resonance analysis is done after adding the
additional tip mass. Table 5.3 and Figure 5.8 present the obtained results.

Table 5.3: Data from the frequency sweep analysis of the U-shaped harvester body with
Galfenol sheet, 3D-printed piece and additional tip mass.

f (Hz) IRMS (mA) Vout (mV) VApp (mV) A0 (m/s2) Y0 (mm) X0 (mm)

30 16.33 398 72 3.53 0.0994 -0.0145

35 17.28 435 102 5.00 0.1035 0.0122

41 23.72 485 132 6.47 0.0976 0.0483

44 31.42 541 156 7.65 0.1001 0.0888

46 34.60 597 168 8.24 0.0986 0.1292

47 37.39 667 172 8.44 0.0967 0.1798

48 39.01 744 182 8.93 0.0981 0.2354

49 41.66 823 188 9.22 0.0973 0.2925

50 45.13 890 198 9.71 0.0984 0.3409

52 50.89 1060 210 10.30 0.0965 0.4637

54 36.06 1190 225 11.04 0.0959 0.5576

55 30.78 1420 243 11.92 0.0998 0.7237

60 40.29 1120 294 14.42 0.1015 0.5070

62 36.06 823 321 15.75 0.1038 0.2925

64 30.78 712 329 16.14 0.0998 0.2123

65 34.98 614 352 17.27 0.1035 0.1415

70 91.58 510 412 20.21 0.1045 0.0664

80 123.44 425 547 26.83 0.1062 0.0050

100 173.21 412 794 38.95 0.0987 -0.0044
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Figure 5.8: Frequency sweep of the U-shaped harvester body with Galfenol sheet, 3D-
printed piece and additional tip mass.

The resonance peak is observed at a frequency of 56 Hz, which is a significant change
compared to the one observed in sections 5.1 and 5.2.1.3. This relevant frequency
reduction is due to the weight added to the tip, of 2.1972 g, which results to be high
in comparison with the weight of the Galfenol sheet and the PLA 3D-printed piece.
These results imply that the resonance frequency of the system can be easily tuned by
just modifying the tip mass.

Finally, the resonance analyses for the three different prototype configurations are
compared in Figure 5.9. It can be seen how the resonance frequency is barely lowered
when adding the Galfenol and the 3D-printed piece, and how it is approximately halved
with the addition of the tip mass. It is observed the amplitude of vibration increases
when including the Galfenol and the 3D-printed wiring piece. However, a clear decrease
in the amplitude of vibration is noticed when incorporating the additional tip mass.
This amplitude of vibration variation can be attributed to the difference of stiffness,
mass and geometry between the different configurations, that introduce variations in
the vibration resonant modes and resonant frequencies.
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Figure 5.9: Comparison between the resonance analyses at a constant shaker vibration am-
plitude of 0.1 mm.

5.3. Comparison between Theoretical and Empirical
Results

In this section, the theoretical and the empirical obtained results are compared. In
order to determine the damping parameters to perform the numerical simulation, the
ideal (no damping) theoretical resonance curve is compared with the respective exper-
imental one obtained from the laboratory data. These damping coefficients are only
determined for the U-shaped body with the ferrite magnet tip mass without any other
additional element. Nevertheless, it is important to mention that their adjustment
does not affect significantly to the value of the resonance frequency. A Young modulus
of 113 GPa (similar to the initially considered value of 110 GPa from [23] since the
manufacturer of the U-shaped body did not provide this data) is considered. This
slight variation modifies the resonance frequency value from 111.7 Hz to 113.2 Hz.



5.3. Comparison between Theoretical and Empirical Results 61

The values for the two Rayleigh parameters, α and β, that lead to the best fit
between the theoretical and the laboratory data for the U-shaped main body with the
tip mass are shown in Table 5.4.

Table 5.4: Damping coefficients determination.

α (s−1) β (s)
1 0.00003

Figure 5.10 shows the theoretical prediction and the empirical results for the U-
shaped body with the tip mass conformed by the cylindrical ferrite magnet.
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Figure 5.10: Comparison of theoretical and empirical results of the U-shaped body.

It can be observed that the theoretical results agree with the results obtained in
the laboratory. Thus, the theoretical model is optimum to model the behavior of the
system and permits to predict the performance of the U-shaped vibrating structure
(and the harvester based on it), in terms of its resonance. This affirmation also relies
on the fact that, as checked experimentally, the addition of the magnetostrictive sheet
and the pick-up coil barely modify the resonance frequency. As a consequence, the
previously proposed modeling has been revealed as a powerful tool for the design of
magnetostrictive harvester devices.

Now the Rayleigh damping parameters are known, the dynamic simulation is per-
formed following the procedure indicated in Section 3.2.8. The displacements in the z
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direction for the U-shaped main harvester body as well as the σxx stresses are shown in
Figure 5.11. These displacements and stresses are the solutions for a vibration source
with a frequency of 113 Hz (resonance frequency) and an acceleration of 10 m/s2.

(a)

(b)

Figure 5.11: (a) Displacement in z direction (mm) under dynamic loading for the two-
domain geometry. (b) σxx (MPa) under dynamic loading for the two-domain
geometry.

In Figure 5.11 it can be observed that the maximum displacements are lower than
the distance between the upper and the lower parts of the U-shaped main body, so the
design is validated for dynamic resonance conditions. The oscillation amplitudes can
be seen to be lower than in the resonance analyses due to the fact the shaker oscillation
amplitude, Y0, corresponding to a peak acceleration A0 of 10 m/s2 for a frequency of
113 Hz, is lower than 0.1 mm (0.0198 mm). With respect to the generated stresses,
maximum σxx stresses are observed in the bent part of the U-shaped main body as in
the static solution.

It should be noticed that the solutions for the displacements and stresses in Figure
5.11 are amplitude values. Thus, in order to obtain the total displacements and stresses,
the constant values from the static solution in Figure 3.12 should be added. However,
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it can be seen that the displacements and stresses produced by the action of gravity in
static are almost negligible in comparison to those produced by the vibration source.





Chapter 6

Conclusions and Future Work

In this last chapter, the main conclusions extracted from the project are exposed
and contrasted with the initial objectives. Additionally, the future work lines to further
develop this work are commented.

6.1. Main Conclusions

The fulfillment of the objectives presented at the beginning of this project is dis-
cussed in the present section, together with the conclusions of the obtained theoretical
and empirical results.

The different objectives that were initially proposed in Chapter 1 have been success-
fully achieved. A magnetic vibrant structure was designed from the initial proposal of
Ueno in [20] by using SolidWorks®. This design was submitted to numerical simulations
in MATLAB® in order to validate the design by the analysis of the resonance frequency,
the stresses and the displacements under static and dynamic conditions. Since all these
factors were optimized, it was concluded that the structure could suppose the base for
a magnetostrictive vibrational harvester with an adequate performance. Moreover,
the prototype has a great potential in low frequency applications thanks to its low
material and manufacturing costs, its long useful life, its compactness and its tuning
possibilities.

An initial prototype was then constructed and different parts of the future mag-
netostrictive harvester were included in order to study empirically the behavior of
different configurations of the system. It was observed that the behavior of the design
was easily-adjustable, something which increases its applications potential thanks to
the possibility of customizing the resonance frequency to obtain the maximum perfor-
mance on each use.

Finally, the results obtained in the numerical simulations in MATLAB® for the U-
shaped body, show a relevant agreement with the experimental data. This fact validates
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the performed theoretical analysis as a pre-manufacturing stage of the prototype where
the main features can be estimated with accuracy, which implies lower design costs for
obtaining the desired behavior of the device.

6.2. Future Work Lines

There exist three main future work lines that could suppose the continuation of the
present project and have been excluded due to time constraints:

• Determination of the harvester performance along time and possible ways to
lower the cost of the design.

• Magnetic and electric numerical simulations to be able to study the overall be-
havior of the harvester without the need of constructing it.

• Implementation of the device in real applications.

6.2.1. Harvester Performance Determination

This project has centered on the design and validation of the magnetic vibrant
structure that would constitute the base of a future magnetostrictive harvester. The
next step to what has been done in this work would be to assemble the copper pick-up
coil on the 3D-printed wiring piece. After this, the induced emf could be measured
with an oscilloscope, in order to determine the performance of the harvester. An study
on which is the optimal load for obtaining the maximum power from the harvesting
device (for different frequencies and accelerations) would also be highly useful to adapt
the harvester to different applications.

Though in this project Galfenol has been used as magnetostrictive material due to its
greater magnetostrictive saturation constant, it could be studied whether Fe–Co alloys
could be employed to lower the harvester cost with comparable performance. A possible
way to obtain a similar performance would be to implement a second magnetostrictive
sheet on the opposite side of the upper part of the U-shaped main body. This can not
be made with Galfenol due to the fact it presents a positive magnetostriction constant
and it would lead to the canceling of the magnetic flux variation through the coil.
However, Fe–Co alloys present the possibility of having negative magnetostriction, so
that both the upper and the lower active layers can contribute to augment the magnetic
flux variation through the coil without canceling, enhancing harvester’s performance.

Additionally, during this project it was commented that the U-shaped main body
of the harvester was susceptible to pitting corrosion. An study could be done on how
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this phenomenon affects the performance and the durability of the device, with fatigue
tests and emf measurements.

6.2.2. Mechanical-Magnetic Coupling and Electromagnetic
Induction Numerical Simulations

In addition to the mechanical numerical simulations carried out in this project, a
further simulation study could be done. By using MATLAB®, it could be numerically
simulated the mechanical-magnetic coupling (governed by Villari’s or inverse magne-
tostriction effect), as well as the electromotive force induction that would take place
(governed by Faraday’s law). There exist no specific functions for magnetostriction
phenomenons in MATLAB® so the needed functions would be implemented manually.

These additional numerical simulations could be afterwards compared with the ex-
perimental results in order to check if the modeling of the inverse magnetostriction and
electromotive force induction effects is adequate. If the modeling is accurate, the code
could be used to modify the geometry and parameters of design to further optimize the
harvester, diminishing the experimentation costs to obtain the best device possible.

6.2.3. Real Applications Implementation

Finally, after having a complete characterization of the device, knowing how its
performance is affected by ambient conditions and time; it could be optimized for a
particular use and implemented in different real applications. Industrial applications
in particular show a high potential due to the large presence of heavy machinery whose
generated vibrations are of low frequency (approximately 100 Hz [9]). Moreover, these
vibrations are commonly periodic if generated by rotating machines, something which
enhances the harvester performance (closer to ideal sinusoidal vibrations). An study
could be performed in order to enable the energy collected by the harvester from a
variable vibrating source, to power a device whose consumption is not constant along
time.
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Appendix B

Optimal Galfenol Sheet Selection for
the Future Harvester

In this appendix it is shown how the optimal selection of the Galfenol magnetostric-
tive sheet should be made for the future harvester construction. The two main factors
that are considered are the average stresses in the magnetostrictive layer under vibra-
tion and the magnetization function of the material.

By using function calc_vol_average.m the average stress in the magnetostrictive
material sheet for the simulated vibration conditions could be determined for the four-
domain geometry. By summing the average constant stress generated due to the static
gravity load and the amplitude of the average stress due to the oscillatory accelera-
tion produced by the vibration source, the average stresses that the magnetostrictive
material would suffer along one vibration cycle could be known (see Code C.9).

After knowing the average stresses in the magnetostrictive material along one period
of vibration, it is modeled the magnetization of Galfenol as a function of the applied
stresses. This magnetostrictive material can be manufactured with or without applied
compressive stress during the annealing process. Different performance is expected
from the different types of Galfenol pieces. The as-cast state produces changes in the
magnetization only when compressive loads are applied. Under tensile stresses (one-
half of the vibration) the material is magnetically saturated and no changes in the
magnetization are produced. The stress annealing process permits the translation of
the as-cast magnetization curve, leading to a magnetization change interval under both
compressive and tensile stress, consequently optimizing the energy conversion.

The equation provided in [28] is employed for determining the magnetization de-
pendence on the applied stress on Galfenol. In this equation, the applied compressive
stress in the manufacturing process, σb, is a parameter. This way, it can be deter-
mined, together with the information provided by Code C.9 about the average stresses
in the active material along one vibration cycle, which is the manufacturing stress that
should be demanded to the provider.
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The best solution will be the one for which the maximum magnetization variation
is produced at the average total stress at which the Galfenol sheet is working (which
could be determined from Code C.9). This way, the magneto-mechanical coupling will
be maximized. Equation B.1 models the Galfenol magnetization as a function of the
magnetic field intensity and the applied stress as shown in [28].

M(H, σ) =
α · H

γ·(σ+σb)

β + ( H
γ·(σ+σb)

)4
+Ms · tanh H

γ · (σ + σb)
(B.1)

In this equation, Ms is the magnetic saturation, σb is the built-in stress due to the
stress annealing process (limited by TdVib LLC, the supplier of the Galfenol sheets),
α, β and γ are some model parameters and H is the magnetic field intensity due to
the bias flux magnet. The values that have been given to the different parameters are
the ones in [28] since this simulation will be taken as an approximation: Ms = 1.72 T,
α = 1.1233 T, β = 0.8415 and γ = −9.7927 · 10−5 T−1. The magnetic field intensity
from the Nd magnet is expected to be between 100 and 200 A/m in the Galfenol sheet,
so it is set at H = 150 A/m. The code corresponding to this simulation is Code
C.17. Figure B.1 shows the Galfenol magnetization curves for the two built-in stresses
available from the manufacturer TdVib LLC.
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Figure B.1: Galfenol magnetization curves for the two built-in stresses available from the
manufacturer TdVib LLC.
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It must be noticed that the built-in stress corresponding to the maximum magneti-
zation variation should be chosen, but if real stresses are actually higher, the material
would saturate and no variation in the magnetization would be appreciated, so the
harvester performance would be severely affected. The manufacturer was only able
to provide Galfenol sheets as-grown without any stress applied during the annealing
process, or with a compressive stress of –20 MPa during the annealing process. Taking
into account the risks of just acquiring the stress annealed galfenol sheets due to the
high compression stress values, it is decided to acquire both types of Galfenol sheets
in order to analyze how it affects the future harvester performance.

With respect to the vibrant structure that is being analyzed in this project, this
Galfenol sheet purchase decision does not have any implications since mechanical prop-
erties will not be affected. This election will only be affecting the future harvester
performance which will integrate the structure developed in this work.





Appendix C

MATLAB® Scripts

C.1. MechanicalSimulation.m

In this main script a mechanical simulation is done to calculate the modes of vi-
bration and the displacements and stresses of the prototype. This script will help to
determine if the geometry is valid (first mode of vibration close to 100 Hz) and to
optimize the model (maximize the average stress in the magnetostrictive material).

Code C.1: Geometry and PDE Problem Definition
1 clear all;
2 close all;
3 clc;
4
5 % Create the PDE model with three unknowns: displacements in directions
6 % x, y and z.
7 elastic_model = createpde(3);
8
9 % Load the 3D harvester geometry file from the nodes and elements by running the file Gmsh_mesh_data.m.

10 % The positions of the nodes are scaled so that the dimensions are in meters instead of milimeters.
11 Gmsh_mesh_data
12 nodes = msh.POS'∗1e−3; elem = msh.TETS; groupsID = elem(:, 5);
13 elem = elem(:, 1:4); elem = elem';
14
15 % Create the geometry from the nodes and the elements loaded.
16 gm = geometryFromMesh(elastic_model, nodes, elem, groupsID);
17
18 % Figure to know how the program names the geometry domains and faces.
19 figure('Name', 'Harvester geometry identification (dimensions in m)')
20 subplot(1, 2, 1);
21 pdegplot(elastic_model, 'FaceLabels', 'off', 'CellLabels', 'on', 'FaceAlpha', 0.5);
22 title('Harvester domain identification (dimensions in m)');
23
24 subplot(1, 2, 2);
25 pdegplot(elastic_model, 'FaceLabels', 'on', 'CellLabels', 'off', 'FaceAlpha', 0.5);
26 title('Harvester face identification (dimensions in m)');

Code C.2: Coefficients Definition and Boundary Conditions
1 % Define the material properties of the different domains.
2 % The main body of the harvester (Cell 1) is made of gray cast iron:
3 % − Young Modulus (E) = 110 GPa (initial approximation)
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4 % − Poisson's Ratio (nu) = 0.28
5 % − Density (rho) = 7200 kg/m^3
6
7 % The tip mass (Cell 2) is made of ferrite:
8 % − Young Modulus (E) = 200 GPa
9 % − Poisson's Ratio (nu) = 0.291

10 % − Density (rho) = 7870 kg/m^3
11
12 % The magnetostrictive material (Cell 3) is made of Galfenol:
13 % − Young Modulus (E) = 59 GPa
14 % − Poisson's Ratio (nu) = 0.44
15 % − Density (rho) = 7800 kg/m^3
16
17 % The wiring piece (Cell 4) is made of PLA:
18 % − Young Modulus (E) = 3.5 GPa
19 % − Poisson's Ratio (nu) = 0.36
20 % − Density (rho) = 1240 kg/m^3
21
22 % This code corresponds to the two−domain geometry simulation. In order to do the four−domain goemetry
23 % simulation, the parameters for the two additional domains must be defined here.
24 E = [110e9; 200e9];
25 nu = [0.28; 0.291];
26 % Note density of domain 2 is defined based on the tip mass as it can be next seen.
27 rho = [7200; 0];
28
29 % In the case of the tip mass, the variable desired to be controlled is the added mass. However, since the
30 % parameter needed is the density, it will be calculated by dividing the mass variable by the volume
31 % corresponding to the volume of domain C2.
32
33 % Tip mass in kg (S.I.):
34 % − First configuration (just U−shaped body and ferrite magnet): 0.4781 g.
35 % − Second configuration (U−shaped body, Galfenol sheet and ferrite magnet): 0.4781 g.
36 % − Third configuration (U−shaped body, Galfenol sheet, ferrite magnet and additional tip mass): 2.6753 g.
37 m = 0.4781e−3;
38
39 % In order to calculate the volume of the tip mass the function calc_vol_average.m is employed. This function
40 % can provide both the volume of a domain and the volumetric average of a magnitude in that domain. In this
41 % case the interest is put just on the second output of the function which gives the volume. The first output
42 % will be used later in the simulation. To see further details on the function used go to the file
43 % calc_vol_average.m.
44 [~, volume_tip_mass] = calc_vol_average(elastic_model, 0, 2);
45 rho(2) = m / volume_tip_mass; % Density value.
46
47 g = 9.81; % Gravity value.
48
49 % Calculation of elasticity c matrices considering the materials isotropic.
50 c = [elasticityC3D(E(1), nu(1)), elasticityC3D(E(2), nu(2))];
51
52 % Coefficients are specified using specifyCoefficients function
53 % considering the two domains: the main body (Cell 1) and the tip mass
54 % (Cell 2).
55 for i = 1:gm.NumCells
56 specifyCoefficients(elastic_model, 'm', rho(i), 'd', 0, 'c', c(:, i), 'a', 0, 'f', 0, 'Cell', i);
57 end
58
59 % Define the boundary conditions, in this case we want face F2
60 % (see Figure 3.10) to be fixed to the reference system, that is, a Dirichlet
61 % type condition with displacement vector: u = [0; 0; 0].
62 applyBoundaryCondition(elastic_model, 'dirichlet', 'Face', 2, 'u', [0; 0; 0]);
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Code C.3: Mesh Generation
1 % If the Matlab meshing is desired instead of the one generated by Gmsh, uncomment the following command
2 % (Hmax defines the maximum size of the mesh elements):
3 % generateMesh(elastic_model , 'Hmax', 5e−4);
4
5 % Figure to visualize the obtained meshing.
6 figure('Name', 'Harvester mesh')
7 pdeplot3D(elastic_model);
8 title('Harvester mesh');

Code C.4: Solution: Resonance Frequencies
1 % Look for the frequencies and resonance modes between 0 and 1e9 and save the solution in res_n.
2 res_n = solvepdeeig(elastic_model, [0, 1e9]);
3
4 % The solutions for the resonance are inside the part .Eigenvalues. The values of the natural frequencies are to
5 % the square so we operate with the square root.
6 omegas = sqrt(res_n.Eigenvalues);
7
8 % The natural frequency (rad/s) is: omega = 2∗pi∗f so we determine the resonance frequencies as:
9 fn = omegas/(2∗pi);

10
11 % Table with the resonance frequencies.
12 tmodalResults = table((1:length(fn))', fn);
13 tmodalResults.Properties.VariableNames = {'Mode', 'Frequency (Hz)'};
14 disp(tmodalResults);

Code C.5: Animation of the Prototype’s First 6 Modes of Vibration
1 % Create a modal−solid.
2 model_animated = createpde('structural','modal−solid');
3
4 % Geometry is built as before from the mesh file Gmsh_mesh_data.m and then scaled so that all dimensions
5 % are in m (S.I.). In order to minimize the memory necessary to calculate the frames of the animation, a
6 % coarser meshing can be employed since data is not wanted to be used quantitatively but qualitatively in this
7 % case.
8 gm_animated = geometryFromMesh(model_animated, nodes, elem, groupsID);
9 generateMesh(model_animated, 'Hmax', 0.001);

10
11 % Define the structural properties of each of the domains.
12 for i = 1:gm_animated.NumCells
13 structuralProperties(model_animated, 'Cell', i, 'YoungsModulus', E(i), 'PoissonsRatio', nu(i), ...
14 'MassDensity', rho(i));
15 end
16
17 % Define the boundary condition, consisting on the lower face to be fixed (which was seen in Figure 1 to be
18 % Face 2).
19 structuralBC(model_animated, 'Face', 2, 'Constraint', 'fixed');
20
21 % Solve the model for the given frequency range.
22 RF = solve(model_animated, 'FrequencyRange', [0, 4000] ∗ 2 ∗ pi);
23
24 % With the function animateHarvester.m each of the frames is obtained in order to see the modes of vibration
25 % animation.
26 frames = animateHarvester(RF, omegas);
27 % Finally, the animation is created by the function movie(), which plays the created frames. The figure is
28 % configured to be able to be seen completely once the animation has started. 8 is the times the movie is
29 % played and 30 the FPS.
30 movie(figure('units', 'normalized', 'outerposition', [0 0 1 1]), frames, 8, 30)
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Code C.6: Solution: Gravity Load, Deformations and Stresses
1 % In this case it is taken into account the gravity force F.
2 f_grav = rho' .∗ [0; 0; −g];
3
4 % The coefficients are defined for each of the domains (cells).
5 for i = 1:gm.NumCells
6 specifyCoefficients(elastic_model, 'm', 0, 'd', 0, 'c', c(:, i), 'a', 0, 'f', f_grav(:, i), 'Cell', i);
7 end
8
9 % Solve the PDE.

10 res_static = solvepde(elastic_model);
11
12 % Tension amplitude in the x direction (gradient of c).
13 [cgradx_static, ~, ~] = evaluateCGradient(res_static);
14
15 figure('Name', 'Z−displacement and \sigma_{xx} under gravity load (MPa)')
16 subplot(1, 2, 1);
17 pdeplot3D(elastic_model, 'ColorMapData', ...
18 res_static.NodalSolution(:, 3) ∗ 1e3);
19 title('Displacement in Z direction (mm)');
20
21 subplot(1, 2, 2);
22 pdeplot3D(elastic_model, 'ColorMapData', cgradx_static(:, 1) ∗ 1e−6);
23 title('\sigma_{xx} under gravity load (MPa)');

Code C.7: Damping Coefficients Determination
1 % Create a modal−solid.
2 model_freq = createpde('structural', 'frequency−solid');
3
4 % Create the geometry from the nodes and the elements loaded.
5 gm = geometryFromMesh(model_freq, nodes, elem, groupsID);
6
7 % Definition of the damping parameters of the system (suppositions)
8 E(1) = 113e9;
9 alpha = 1;

10 beta = 0.00003;
11 structuralDamping(model_freq, 'Alpha', alpha, 'Beta', beta);
12
13 % Define the structural properties of each of the domains.
14 for i = 1:gm.NumCells
15 structuralProperties(model_freq, 'Cell', i, 'YoungsModulus', E(i), 'PoissonsRatio', nu(i), ...
16 'MassDensity', rho(i));
17 end
18
19 % Define the boundary condition, consisting on the lower face to be fixed (which was seen to be Face 2).
20 structuralBC( model_freq, 'Face', 2, 'Constraint', 'fixed');
21 % Solve the model for the given frequency range.
22 freqList = 40:2.5:150;
23 omegaList = freqList∗2∗pi;
24
25 for ifreq = 1:length(freqList)
26 % Body load due to non−inertial reference frame. If A is the
27 % acceleration of the shaker (amplitude of 0.1 mm):
28 A = 0.1e−3 ∗ omegaList(ifreq)^2;
29 structuralBodyLoad(model_freq, 'GravitationalAcceleration', [0; 0; A]);
30 RF = solve(model_freq, [1, omegaList(ifreq)]);
31
32 % Create a matrix where the displacement in the z direction for each frequency in freqList is shown in each
33 % column.
34 uz(:, ifreq) = RF.Displacement.z(:,2);
35 fprintf('Frequency: %f Hz\n', freqList(ifreq))
36 end
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37 % Average displacement of the magnet at the tip (domain 2)
38 [mean_uz, V] = calc_vol_average(elastic_model, uz , 2);
39
40 % Define the data found in the laboratory, both the frequencies and the displacements in the z direction (X_0)
41 freqListLab1 = [40, 50, 60, 70, 80, 90, 100, 105, 110, 115, 117, 120, 125, 130, 140, 150];
42
43 uzLab1 = [0.0302564, 0.0772085, 0.0735968, 0.0974341, 0.1292171, 0.2325118, 0.5720119, 1.2365653, ...
44 2.3778636, 3.0568639, 1.9574613, 0.9331822, 0.3148586, 0.0880436, 0.0504819, 0.0894883];
45
46 lorentzEq = 'a + 2∗b/3.14159254 ∗ c/(4∗(x−d)^2 + c^2)';
47 startPoints = [0 185 10 115];
48 p_th = fit( freqList', (abs(mean_uz)∗1000)', lorentzEq, 'Start', startPoints);
49 p_lab1 = fit( freqListLab1', uzLab1', lorentzEq, 'Start', startPoints);
50
51 % Plot the average displacement of the tip mass for each frequency.
52 figure('Name', 'Comparison between theoretical and experimental resonance frequency results')
53 pth = plot(p_th, 'r', freqList, abs(mean_uz)∗1000, 'k o'); hold on;
54 set(pth, 'Linewidth', 1);
55 plab = plot(p_lab1, 'b', freqListLab2, uzLab2, 'k d'); hold off;
56 set(plab, 'Linewidth', 1);
57 xlabel('Frequency (Hz)', 'FontSize', 12);
58 ylabel(['X_{0}', ' (mm)'], 'FontSize', 12);
59 xlim([40, 150]); ylim([−0.1, 5.5]);
60 legend({['Theoretical model: E = 113 GPa; ', '$\alpha = 1$ s$^{−1}$', ' $\beta = 0.00003$ s'], ...
61 'Theoretical model Lorentz fit', 'Experimental data', 'Empirical model Lorentz fit'}, 'interpreter', ...
62 'latex', 'FontSize', 11, 'Location', 'Northwest');
63 set(gca,'fontname','times', 'fontsize', 12);

Code C.8: Solution: Harmonic Load, Deformations and Stresses
1 % Create a modal−solid.
2 model_harmonic = createpde('structural', 'frequency−solid');
3 % Create the geometry from the nodes and the elements loaded.
4 gm = geometryFromMesh(model_harmonic, nodes, elem, groupsID);
5
6 % Definition of the damping parameters of the system
7 structuralDamping(model_harmonic, 'Alpha', alpha, 'Beta', beta);
8
9 % Define the structural properties of each of the domains.

10 for i = 1:gm.NumCells
11 structuralProperties(model_harmonic, 'Cell', i, 'YoungsModulus', E(i), 'PoissonsRatio', nu(i), ...
12 'MassDensity', rho(i));
13 end
14
15 % Define the boundary condition, consisting on the lower face to be fixed (which was seen to be Face 2).
16 structuralBC(model_harmonic, 'Face', 2, 'Constraint', 'fixed');
17
18 % Solve the model for the desired frequency.
19 freq = 113;
20 omega = freq∗2∗pi;
21
22 % Body load due to non−inertial reference frame. If A is the acceleration of the shaker in m/s^2:
23 A = 10;
24 structuralBodyLoad(model_harmonic, 'GravitationalAcceleration', [0; 0; A]);
25
26 % Two different omega values are needed for it to work, so only the values corresponding to omega will be
27 % considered.
28 RF = solve(model_harmonic, [1, omega]);
29
30 % The z displacement is the vector in the second column of RF.Displacement.z (the column that corresponds
31 % to omega).
32 uz = RF.Displacement.z(:, 2);
33
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34 % The amplitude of the tension in the x direction is the one desired. It puts a ''_0” to indicate it is the
35 % amplitude of the tension. Sigma_xx is calculated using the function evaluateStress:
36 stresses = evaluateStress(RF);
37 sxx_harmonic_0 = abs(stresses.xx(:, 2));
38 % modulus because the solutions are complex
39
40 % Finally plot two figures with the amplitudes of the tensions and the displacements. The displacement in the
41 % z direction has already been calculated: uz, but since the solution is complex the modulus is calculated with
42 % abs().
43 figure('Name', ['Z−displacement and \sigma_{xx} under dynamic', 'load (MPa)'])
44 subplot(1, 2, 1);
45 pdeplot3D(elastic_model, 'ColorMapData', abs(uz)∗1e3);
46 title('Displacement in Z direction (mm)');
47
48 subplot(1, 2, 2);
49 pdeplot3D(elastic_model, 'ColorMapData', sxx_harmonic_0∗1e−6);
50 title('\sigma_{xx} under dynamic load (MPa)');

Code C.9: Stresses in the magnetostrictive material
1 % For the design of the harvester it is very significant to achieve a relevant value of stress in the x direction in
2 % the magnetostrictive material since this will affect directly the magnetic field created according to the Villari
3 % effect. In order to obtain the mean value of stress in the x direction in the magnetostrictive sheet (Cell 3),
4 % the previously commented function, calc_vol_average.m is used. Consult the file calc_vol_average.m for
5 % further details on how it works.
6
7 % Calculate the average stress in the x direction in the case of the static load in the magnetostrictive sheet.
8 [avg_sxx_grav, ~] = calc_vol_average(elastic_model, cgradx_static(:, 1) ∗ 1e−6, 3);
9

10 % Calculate the average stress in the x direction in the case of the harmonic load in the magnetostrictive sheet
11 % (Cell 3). It can be noted that this average value calculated in this case is the amplitude.
12 [avg_sxx_harmonic_0, ~] = calc_vol_average(elastic_model, sxx_harmonic_0∗1e−6, 3);
13
14 % Calculate a time vector for one period divided in 100 time steps and calculate the vector of the average
15 % stress due to harmonic load during one period by multiplying the amplitude calculated before by the sine
16 % of the natural frequency times the time vector.
17 time_vector = 0:1/freq/100:1/freq;
18 avg_sxx_harmonic = avg_sxx_harmonic_0∗sin(omega∗time_vector);
19
20 % Plot the average stress in the x direction in the magnetostrictive sheet due to gravity load, harmonic load
21 % produced by the accelerometer and to both of them (total load) during one period of the oscillatory load.
22 figure('Name', ['Average \sigma_{xx} in the magnetostrictive laminate along one cycle on the accelerometer', ...
23 '(10 m/s^{2})']);
24 hold on; yline(avg_sxx_grav, 'k', 'LineWidth', 0.8);
25 plot(time_vector, avg_sxx_harmonic, 'LineWidth', 0.8);
26 plot(time_vector, avg_sxx_harmonic + avg_sxx_grav, 'LineWidth', 2); hold off;
27 xlim([0, 1/freq]);
28 xlabel('Time (s)', 'FontSize', 12);
29 ylabel(['\sigma_{xx}', ' (MPa)'], 'FontSize', 12);
30 legend({'$\overline{\sigma}_{xx,\;gravity\;load}$', '$\overline{\sigma}_{xx,\;harmonic\;load}$', ...
31 '$\overline{\sigma}_{xx,\;total\;load}$'}, 'interpreter', 'latex', 'FontSize', 16);
32 title(['Average \sigma_{xx} in the magnetostrictive laminate along one cycle on the accelerometer', ...
33 '(10 m/s^{2})'], 'FontSize', 14);
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C.2. animateHarvester.m

The function animateHarvester.m calculates the frames of the periodic deformation
with time, scaled so that it is observable, of a harvester for the first six modes of
vibration. This code is based on the example in [27]. The inputs and outputs of this
function are shown in Table C.1.

Table C.1: Inputs and outputs of the function animateHarvester.m.

INPUTS - R : solution of the desired modal structural solid for a certain frequency
range.

- omegas : column vector with the natural frequencies corresponding to the
different modes of vibration of the harvester.

OUTPUTS - frames : the desired number of frames (can be changed in the animation
parameters) for the six first modes of vibration of the harvester.

Code C.10: Function animateHarvester.m
1 function frames = animateHarvester(R, omegas)
2 % Animation parameters.
3 scale = 8e−5;
4 nFrames = 30; % Number of total frames.
5 flexibleModes = 1:6; % Interval of modes of vibration of interest.
6
7 % Create a deformed model for plotting purpose.
8 deformedModel = createpde('structural', 'modal−solid');
9

10 % Undeformed mesh data.
11 nodes = R.Mesh.Nodes;
12 elements = R.Mesh.Elements;
13
14 % Construct pseudo time−vector that spans one period of first six modes.
15 omega = omegas(1:6);
16 timePeriod = 2∗pi./omegas(1:6); % Time period is T = 2∗pi/omega.
17
18 % Create figure from where capturing the frames.
19 h = figure('units', 'normalized', 'outerposition', [0 0 1 1]);
20 % Plot deformed shape of the first six flexible modes and capture frame
21 % for each pseudo time step.
22 for n = 1:nFrames
23 for modeID = 1:6
24 % Construct a modal deformation and a modulus matrix.
25 modalDeformation = [R.ModeShapes.ux(:, flexibleModes(modeID))';
26 R.ModeShapes.uy(:, flexibleModes(modeID))';
27 R.ModeShapes.uz(:, flexibleModes(modeID))'];
28
29 modalDeformationMagi = sqrt(modalDeformation(1,:).^2 + ...
30 modalDeformation(2,:).^2 + ...
31 modalDeformation(3,:).^2);
32 % Normalize the displacement magnitude with respect to the maximum one.
33 modalDeformationMag = modalDeformationMagi/max(modalDeformationMagi);
34
35 % Compute nodal locations of deformed mesh by creating a vector with nFrames between 0 and the
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36 % period of the mode of vibration. Then the deformed positions of the nodes are the ones of the
37 % nodes plus the scaled deformation which is the result of the amplitude (scaled deformation
38 % vector) times the sine of omega times the time.
39 pseudoTimeVector = linspace(0, timePeriod(modeID), nFrames);
40 nodesDeformed = nodes + scale.∗modalDeformation∗sin(omega(modeID).∗pseudoTimeVector(n));
41
42 % Construct a deformed geometric shape using displaced nodes and elements from unreformed
43 % mesh data.
44 geometryFromMesh(deformedModel, nodesDeformed, elements);
45
46 % Plot the deformed mesh with magnitude of mesh as color plot.
47 subplot(2, 3, modeID)
48 pdeplot3D(deformedModel, 'ColorMapData', modalDeformationMag)
49 title(sprintf(['Flexible Mode %d\n', 'Frequency = %g Hz'], modeID, omega(modeID)/2/pi));
50
51 % Remove colorbar for clarity.
52 % colorbar off
53 delete(findall(gca, 'type', 'quiver'));
54
55 % Remove deformed geometry to reuse to model for next mode.
56 deformedModel.Geometry = [];
57 end
58
59 % Capture a frame of six deformed mode for time instant.
60 frames(n) = getframe(h);
61 end
62
63 end



C.3. calc_vol_average.m 101

C.3. calc_vol_average.m

The function calc_vol_average.m calculates the volume average of u scalar magni-
tude in the cell corresponding to domainID. The inputs and outputs of this function
are given in Table C.2.

Table C.2: Inputs and outputs of the function cal_vol_average.m.

INPUTS - modelPDE : PDE model as defined by createpde(number of unknowns).
- u : solution column vector with the magnitude at each node.

e.g. cgradx_harmonic_0(:, 1)*1e-6.
- domainID : ID number of the domain or cell of interest.

OUTPUTS - avg : volume average of u magnitude in the input cell or domain.
- V : volume of the input cell or domain.

Code C.11: Function calc_vol_average.m
1 function [avg, V] = calc_vol_average(modelPDE, u, domainID)
2 % Duplicate the model for avoiding overwriting.
3 model = createpde(1);
4 model.Geometry = modelPDE.Geometry;
5 model.Mesh = modelPDE.Mesh;
6 model.BoundaryConditions = modelPDE.BoundaryConditions;
7
8 % Specify the new coefficients so that coefficients for the rest of
9 % domains apart from domainID are null.

10 specifyCoefficients(model, 'm', 0, 'd', 0, 'c', 0, 'a', 0, 'f', 0);
11 specifyCoefficients(model, 'm', 0, 'd', 0, 'c', 0, 'a', 0, 'f', 1, 'Cell', domainID);
12
13 % Volumetric load vector resulting from the integration of the discretized version of the f coefficient.
14 FEMs = assembleFEMatrices(model, 'F');
15 F = FEMs.F;
16
17 % Volume of domainID will be the sum of all the components of F (sum of the volume of all the elements
18 % conforming the domain).
19 V = sum(F);
20
21 % The average of u in domainID will be the volume corresponding to each node times the function u at
22 % each node, all divided by the total volume.
23 avg = F'∗u/V;
24
25 end
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C.4. ExperimentalData.m

In this script the data collected from the calibration of the displacement sensor and
the different resonance analyses is used to elaborate the different plots.

Code C.12: Calibration of the Displacements Sensor (Figure 4.16)
1 y = [0.06635, 0.09505, 0.1479, 0.1951, 0.2473, 0.2957, 0.3466, 0.4150, 0.4547, 0.5169, 0.5951, 0.6747, 0.7504, ...
2 0.8300, 0.9058, 0.9915, 1.0834, 1.1505, 1.2375, 1.3294];
3 x = [0.435, 0.512, 0.585, 0.665, 0.750, 0.835, 0.908, 1.020, 1.100, 1.200, 1.290, 1.410, 1.510, ...
4 1.590, 1.680, 1.810, 1.900, 1.960, 2.110, 2.160];
5
6 p = polyfit(x, y, 1);
7 xl = linspace(0, 2.2);
8 yl = polyval(p, xl);
9

10 figure('Name', 'Calibration of the displacement sensor')
11 plot(xl,yl, 'r','Linewidth', 1.5); hold on;
12 xlim([0, 2.2]); ylim([0, 1.35]);
13 plot(x, y, 'k o', 'Linewidth', 1); hold off;
14 xlabel('V_{out} (V)'); ylabel('X_{0} = Y_{0} (mm)');
15 legend({'Regression line','Experimental data'}, 'interpreter', 'latex', 'FontSize', 11, 'Location', 'Northwest');
16 set(gca,'fontname','times', 'fontsize', 12);
17 saveas(gcf, 'Calibration', 'epsc')

Code C.13: Frequency sweep of the first prototype configuration (Figure 5.1)
1 x1 = [40, 50, 60, 70, 80, 90, 100, 105, 110, 115, 117, 120, 125, 130, 140, 150];
2 y1 = [0.0302564, 0.0772085, 0.0735968, 0.0974341, 0.1292171, 0.2325118, 0.5720119, 1.2365653, 2.3778636, ...
3 3.0568639, 1.9574613, 0.9331822, 0.3148586, 0.0880436, 0.0504819, 0.0894883];
4
5 lorentzEq = 'a + 2∗b/3.14159254 ∗ c/(4∗(x−d)^2 + c^2)';
6 startPoints = [0 183 10 115];
7 p_th1 = fit( x1', y1', lorentzEq, 'Start', startPoints);
8
9 figure('Name', 'Resonance Analysis: Configuration I')

10 hold on;
11 p1 = plot( p_th1, 'r', x1, y1, 'k o');
12 set(p1, 'Linewidth', 1);
13 plot([113.04; 113.04], [0; 3.55], '−−', 'Linewidth', 1);
14 text(116, 3.4, '113.04 Hz', 'Color', [0.9290 0.6940 0.1250], 'FontSize', 10); hold off;
15 xlabel('Frequency (Hz)'); ylabel('X_{0} (mm)'); xlim([40, 150]);
16 legend({'Experimental data','Lorentz fit'}, 'interpreter', 'latex', 'FontSize', 11, 'Location', 'Northwest');
17 set(gca,'fontname','times', 'fontsize', 12);
18 saveas(gcf,'ResI','epsc')

Code C.14: Frequency sweep of the second prototype configuration (Figure 5.6)
1 x2 = [40, 50, 60, 70, 80, 90, 100, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 120, 130, ...
2 140, 150];
3 y2 = [−0.0246415, 0.0049745, −0.0015266, 0.0447032, 0.1183820, 0.2122862, 0.4275438, 0.7959375, ...
4 0.9548525, 1.1715547, 1.5182782, 2.3272998, 3.6853003, 4.9277262, 4.6676836, 3.9742365, ...
5 2.2406189, 1.9805762, 1.6049591, 0.8920088, 0.4058735, 0.1371628, 0.0331458, 0.0042521];
6
7 lorentzEq2 = 'a + 2∗b/3.14159254 ∗ c/(4∗(x−d)^2 + c^2)';
8 startPoints = [0 185 10 115];
9 p_th2 = fit( x2', y2', lorentzEq2, 'Start', startPoints);

10
11 figure('Name', 'Resonance Analysis: Configuration II')
12 hold on;



C.4. ExperimentalData.m 103

13 p2 = plot( p_th2, 'r', x2, y2, 'k o');
14 set(p2, 'Linewidth', 1);
15 plot([111.5; 111.5], [0; 5], '−−', 'Linewidth', 1);
16 text(115, 4.8, '111.5 Hz', 'Color', [0.9290 0.6940 0.1250], 'FontSize', 10); hold off;
17 xlabel('Frequency (Hz)'); ylabel('X_{0} (mm)');
18 xlim([40, 150]); ylim([−0.1, 5.2]);
19 legend({'Experimental data','Lorentz fit'}, 'interpreter', 'latex', 'FontSize', 11, 'Location', 'Northwest');
20 set(gca,'fontname','times', 'fontsize', 12);
21 saveas(gcf,'ResII','epsc')

Code C.15: Frequency sweep of the third prototype configuration (Figure 5.8)
1 x3 = [30, 35, 41, 44, 46, 47, 48, 49, 50, 52, 54, 55, 60, 62, 64, 65, 70, 80, 100];
2 y3 = [−0.0145287, 0.0121979, 0.0483149, 0.0887660, 0.1292171, 0.1797809, 0.2354011, 0.2924661, ...
3 0.3408629, 0.4636608, 0.5575651, 0.7237035, 0.5070012, 0.2924661, 0.2122862, 0.1414969, ...
4 0.0663734, 0.0049745, −0.0044160];
5
6 lorentzEq3 = 'a + 2∗b/3.14159254 ∗ c/(4∗(x−d)^2 + c^2)';
7 startPoints = [0 120 10 52];
8 p_th3 = fit( x3', y3', lorentzEq3, 'Start', startPoints);
9

10 figure('Name', 'Resonance III')
11 hold on;
12 p3 = plot( p_th3, 'r', x3, y3, 'k o');
13 set(p3, 'Linewidth', 1);
14 plot([56; 56], [0; 0.708], '−−', 'Linewidth', 1);
15 text(59, 0.7, '56 Hz', 'Color', [0.9290 0.6940 0.1250], 'FontSize', 10); hold off;
16 xlabel('Frequency (Hz)'); ylabel('X_{0} (mm)');
17 xlim([30, 100]); ylim([−0.05, 0.8]);
18 legend({'Experimental data','Lorentz fit'}, 'interpreter', 'latex', 'FontSize', 11, 'Location', 'Northeast');
19 set(gca,'fontname','times', 'fontsize', 12);
20 saveas(gcf,'ResIII','epsc')

Code C.16: Comparison between the resonance analyses (Figure 5.9)
1 figure('Name', 'Resonance comparison', 'units', 'normalized', 'outerposition', [0, 0, 0.5, 0.8])
2 p1 = plot(p_th1, 'r'); set(p1, 'Linewidth', 1);
3 text(116, 3.4, '113 Hz', 'Color', 'r', 'FontSize', 10); hold on;
4 p2 = plot(p_th2, 'k'); set(p2, 'Linewidth', 1);
5 text(115, 4.8, '111.5 Hz', 'Color', 'k', 'FontSize', 10);
6 p3 = plot(p_th3, 'b'); set(p3, 'Linewidth', 1);
7 text(60, 0.7, '56 Hz', 'Color', 'b', 'FontSize', 10); hold off;
8 xlabel('Frequency (Hz)'); ylabel('X_{0} (mm)');
9 xlim([40, 150]); ylim([0, 6]);

10 legend({'Without Galfenol and 3D−printed piece', 'With Galfenol and 3D−printed piece', ...
11 'With Galfenol, 3D−printed piece and additional tip mass'}, 'interpreter', 'latex', 'FontSize', 9, ...
12 'Location', 'Northwest');
13 set(gca,'fontname','times', 'fontsize', 12);
14 saveas(gcf,'Comparative','epsc')
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C.5. GalfenolMagnetizationModel.m

This function model has been extracted from [28] and models the magnetization of
the Galfenol material as a function of the applied stress (Figure B.1).

Code C.17: Galfenol Magnetization Function Model
1 % Parameters definition
2 alpha = 1.1233; % Three first parameters from the model
3 beta = 0.8415;
4 gamma = −9.7927e−5;
5
6 % Built−in stress in the stress annealing process
7 sigma_b = −20e6;
8 sigma = sigma_b:−0.001∗sigma_b:−0.99999∗sigma_b;
9 sigma_2 = −0.99∗sigma_b:−0.5∗sigma_b:−3∗sigma_b;

10 sigma_0 = sigma + sigma_b; %Define the vector for the non−applied stress
11 sigma_0_2 = sigma_2 + sigma_b;
12
13 M_s = 1.72; % Magnetic saturation of Galfenol (in T)
14 M_s_list = [];
15 for i = 1:length(sigma_2)
16 M_s_list(i) = M_s;
17 end
18
19 % Magnetic field strength (expected to be between 100 and 200 A/m)
20 H = 150;
21
22 % Applied stress vector
23 f = gamma ∗ (sigma + sigma_b(1));
24 z = H./f;
25 M = alpha ∗ z/(beta + z.^4) + M_s ∗ tanh(z);
26
27 figure('Name', 'Galfenol Magnetization Function Model')
28 plot(sigma_0∗10^−6, M, 'Color', [0.8500, 0.3250, 0.0980], 'Linewidth', 1); hold on;
29 plot(sigma_0_2∗10^−6, M_s_list,'Color', [0.8500, 0.3250, 0.0980], 'Linewidth', 1);
30 plot(sigma∗10^−6, M, 'Color', [0, 0.4470, 0.7410], 'Linewidth', 1);
31 plot(sigma_2∗10^−6, M_s_list, 'Color', [0, 0.4470, 0.7410], 'Linewidth', 1);
32 hold off;
33 xlim([−20, 30]);
34 xlabel('\sigma (MPa)', 'FontSize', 12);
35 ylabel('\mu_{0}\cdot M (T)', 'FontSize', 12);
36 legend({'$\sigma_b = 0$ MPa', '','$\sigma_b = −20$ MPa'}, 'interpreter', 'latex', 'FontSize', 10, ...
37 'Location', 'Northwest');
38 set(gca,'fontname','times', 'fontsize', 12);
39 saveas(gcf,'Magnetization','epsc')
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