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“It’s supposed to be automatic,
but actually you have to push this button.”

John Brunner
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Executive Summary

The rapid advancement of robotics has revolutionized various industries, particularly
in the realm of Search and Rescue (SAR), where robots are becoming a major focus
of research for deployment in hazardous and unpredictable environments. Among these,
legged-manipulator platforms are attracting significant research interest due to their
potential for performing tasks that require both mobility and manipulation in complex,
unstructured terrains. These platforms combine the agility and stability of legged robots
with the dexterity of manipulators, making them uniquely suited to SAR operations where
the ability to traverse rough terrain and interact with objects is essential.

At the Technical University of Madrid, the RobCib research group, part of the Center
for Automation and Robotics (CAR), has been at the forefront of developing advanced
robotic systems for SAR operations. Over the years, the group has made significant
strides in this area, particularly with the development of ARTU-R, a quadruped robot
designed for victim detection in SAR scenarios. ARTU-R was a pioneering project that
demonstrated the potential of legged robots in SAR tasks, particularly in environments
where wheeled or tracked robots would struggle. However, despite its successes, the
project also highlighted several limitations, particularly in the robot’s control system,
which relied on predefined gait patterns that were not well-suited to the dynamic
and unpredictable conditions typically encountered in SAR missions. Additionally, it
lacked the capability to manipulate objects with a payload higher than 250 g, a critical
function for tasks such as opening doors or clearing debris.

Motivated by these challenges, the next phase of research within the RobCib group
focused on developing a more sophisticated and versatile robotic platform. This led to the
integration of a more capable manipulator with a robust quadruped platform. This Mas-
ter’s Thesis centers on the integration and control of this legged-manipulator platform,
specifically designed to enhance the operational capabilities of SAR robots. The project
involved the adaptation, implementation, and testing of a Nonlinear Model Predictive
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viii EXECUTIVE SUMMARY

Control (NMPC) system for the Unitree AlienGo quadruped robot, equipped with a
Z1 robotic arm as shown in Figure R1. The primary objective was to create a robust
control system that could significantly improve the robot’s locomotion and manipulation
capabilities in challenging SAR environments, such as traversing unstable terrains and
performing tasks like door opening.

Figure R1. Unitree AlienGo quadruped equipped with Z1 arm [46][86].

NMPC is an advanced control strategy used to handle complex, dynamic systems
with nonlinear behavior, like the legged-manipulator platform described in this thesis.
NMPC works by predicting the future behavior of the system over a finite time
horizon and optimizing control actions based on this prediction. By continuously solving
an optimization problem at each time step, NMPC allows for real-time adjustments to
the robot’s movements and interactions, ensuring smooth and precise control in response
to dynamic environments.

To achieve these objectives, the research undertook a comprehensive review of exist-
ing control strategies used in legged robots. It was clear that traditional control systems,
which were often designed for structured environments, were insufficient for the unpre-
dictable and dynamic conditions of SAR operations. The NMPC system used in this
thesis was tailored to overcome these challenges, providing a more flexible and adaptive
control strategy that could dynamically adjust the robot’s behavior in response to the
changing conditions of its environment.

To develop the NMPC system, an external code repository based on ROS Noetic
was used as a foundation. However, this repository had several limitations that needed
to be addressed to adapt it to the specific requirements of the Unitree Aliengo quadruped
and the Z1 robotic arm. The enhancements enabled the controller to be tailored to the
specific kinematics and dynamics of the system, allowing it to be implemented in a more
advanced system based on ROS nodes that utilizes computer vision and planning modules,
eliminating the need for direct user input.
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EXECUTIVE SUMMARY ix

In this Master’s Thesis, significant effort was dedicated to developing an advanced
computer vision system to enhance the robot’s ability to interact autonomously with
its environment, a critical requirement for SAR operations where constant user control
may not be available. The vision system was specifically designed to detect and manip-
ulate door handles, enabling the robot to perform complex tasks such as door opening
without human intervention. Utilizing information retrieved from two depth cameras, this
system allows the robot to accurately position itself, detect and manipulate door handles
autonomously in controlled simulation environments.

To validate the NMPC system and the integration of the Z1 manipulator, extensive
simulations were conducted using the Gazebo platform. These simulations assessed the
robot’s performance in various SAR-relevant scenarios, such as navigating uneven terrains,
climbing stairs, and opening doors. The results demonstrated significant improvements
over previous control strategies, showcasing the enhanced capabilities of the system.

Figure R2. Pallet path simulation.

In addition to simulations, real-world tests were conducted in controlled environ-
ments to further evaluate the system’s performance. Although limited by time constraints
and resource sharing, these tests provided valuable insights into the robot’s practical ca-
pabilities and highlighted areas for future improvement.

Overall, this thesis represents a substantial improvement over the control methods pre-
viously employed by the research group for their legged robotic platforms. The successful
implementation of the NMPC system, combined with the vision-integrated Z1 manipu-
lator, marks a substantial step forward. This advancement lays a strong foundation for
future research within the lab for enhancing the robot’s ability to autonomously navigate
and interact with complex environments. It also opens up new possibilities for integrating
more sophisticated manipulation tasks, refining the control strategies for better adaptabil-
ity in dynamic and unpredictable SAR scenarios, and expanding the robot’s functionality
to tackle increasingly challenging missions.

Keywords: Legged robots, quadruped robotics, Search and Rescue, Nonlinear Model
Predictive Control, Whole-Body Control, mobile manipulators, vision-based control, door
opening.
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Resumen Ejecutivo

El rápido avance de la robótica ha revolucionado diversas industrias, especialmente
en el ámbito de la búsqueda y rescate (SAR, por sus siglas en inglés Search and Res-
cue), donde los robots se están convirtiendo en un tema principal de investigación para
su despliegue en entornos peligrosos e impredecibles. Entre estos, las robots manipu-
ladores con patas están atrayendo un interés significativo debido a su potencial para
realizar tareas que requieren tanto movilidad como manipulación en terrenos complejos
y no estructurados. Estas plataformas combinan la agilidad y estabilidad de los robots
con patas con la destreza de los manipuladores, lo que las hace especialmente adecuadas
para operaciones de SAR donde es esencial la capacidad de atravesar terrenos difíciles e
interactuar con objetos.

En la Universidad Politécnica de Madrid, el grupo de investigación RobCib, ha estado
a la vanguardia en el desarrollo de sistemas robóticos avanzados para operaciones de SAR.
A lo largo de los años, el grupo ha logrado avances significativos en esta área, particu-
larmente con el desarrollo de ARTU-R, un robot cuadrúpedo diseñado para la detección
de víctimas en escenarios de SAR. ARTU-R es un proyecto pionero que ha demostrado
el potencial de los robots con patas en tareas de búsqueda y rescate, especialmente en
entornos donde los robots con ruedas u orugas tendrían dificultades. Sin embargo, a pesar
de los éxitos, el proyecto también ha puesto de manifiesto varias limitaciones, en particular
en el sistema de control del robot, que depende de patrones de marcha predefinidos
que no son adecuados para las condiciones dinámicas e impredecibles típicas de las
misiones SAR. Además, ARTU-R carece de la capacidad de manipular objetos con una
carga útil superior a 250 g por la limitación del brazo robótico que soporta, lo cual es una
función crítica para tareas como abrir puertas o despejar escombros.

Motivado por estos desafíos, la siguiente fase de investigación dentro del grupo RobCib
se centró en desarrollar una plataforma robótica más sofisticada y versátil. Esto llevó a
la integración de un manipulador más capaz con una plataforma cuadrúpeda robusta.
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xii EXECUTIVE SUMMARY

Este Trabajo de Fin de Máster (TFM) se centra en la integración y control de este
robot cuadrúpedo manipulador, específicamente diseñada para mejorar las capacidades
operativas de los robots SAR. El proyecto involucró la adaptación, implementación y
prueba de un sistema de Control Predictivo Basado en Modelo No Lineal (NMPC,
por sus siglas en inglés Nonlinear Model Predictive Control) para el robot cuadrúpedo
Unitree AlienGo, equipado con un brazo robótico Unitree Z1. El objetivo principal fue
crear un sistema de control robusto que pudiera mejorar significativamente las capacidades
de locomoción y manipulación del robot en entornos SAR desafiantes, como atravesar
terrenos inestables y realizar tareas como abrir puertas.

Figure R1. Cuadrúpedo Unitree AlienGo equipado con brazo manipulador Z1 [46][86].

El control predictivo no lineal es una estrategia de control avanzada utilizada para ges-
tionar sistemas complejos y dinámicos con comportamiento no lineal, como el cuadrúpedo
manipulador presentado en este TFM. El NMPC funciona prediciendo el compor-
tamiento futuro del sistema en un horizonte temporal finito y optimizando las acciones
de control en función de esta predicción. Al resolver de manera continua un problema
de optimización en cada paso de tiempo, el NMPC permite realizar ajustes en tiempo
real en los movimientos e interacciones del robot, garantizando un control suave y preciso
en respuesta a entornos dinámicos.

Para alcanzar estos objetivos, se realizó una revisión exhaustiva de las estrategias
de control existentes utilizadas en robots con patas. Fue evidente que los sistemas de
control basados en generación de patrones de marcha, a menudo diseñados para entornos
estructurados, eran insuficientes para las condiciones impredecibles y dinámicas de las
operaciones SAR. El sistema NMPC propuesto en este trabajo se diseñó para superar
estos desafíos, proporcionando una estrategia de control más flexible y adaptable que
pudiera ajustar dinámicamente el comportamiento del robot en respuesta a las cambiantes
condiciones de su entorno.

Para desarrollar el sistema NMPC, se utilizó como base un repositorio de código
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externo basado en ROS Noetic. Sin embargo, este repositorio presentaba varias limita-
ciones que debían ser abordadas para adaptarlo a los requisitos específicos del cuadrúpedo
Unitree AlienGo y el brazo robótico Z1. Las mejoras permitieron adaptar el controlador
a la cinemática y dinámica específicas del sistema, lo que permitió su implementación
en un sistema más avanzado basado en nodos de ROS que utiliza módulos de visión por
computador y planificación, eliminando la necesidad de entrada directa de comandos por
parte del usuario.

En este TFM, se dedicó un esfuerzo significativo al desarrollo de un sistema avan-
zado de visión por computador para mejorar la capacidad del robot de interactuar
autónomamente con su entorno, un requisito crítico para las operaciones SAR donde el
control constante por parte del usuario puede no estar disponible. El sistema de visión se
diseñó específicamente para detectar y manipular manillas de puertas, permitiendo
que el robot realizara tareas complejas como abrir puertas sin intervención humana. Uti-
lizando información obtenida de dos cámaras de profundidad, este sistema permite que
el robot se posicione con precisión, detecte y manipule manillas de puertas de manera
autónoma en entornos de simulación controlados.

Para validar el sistema NMPC y la integración del manipulador Z1, se realizaron sim-
ulaciones extensivas utilizando la plataforma Gazebo. Estas simulaciones evaluaron el
desempeño del robot en diversos escenarios relevantes para SAR, como la navegación en
terrenos irregulares, subir escaleras y abrir puertas. Los resultados demostraron mejo-
ras significativas sobre las estrategias de control anteriores, mostrando las capacidades
mejoradas del sistema.

Figure R2. Simulación de camino de bloques.

Además de las simulaciones, se realizaron pruebas en el mundo real en entornos
controlados para evaluar el desempeño real del sistema. Aunque estuvieron limitadas
por restricciones de tiempo y la compartición de recursos, estas pruebas proporcionaron
interesantes resultados sobre las capacidades prácticas del robot y señalaron áreas para
futuras mejoras.

En general, este TFM representa una mejora sustancial respecto a los métodos de
control utilizados previamente por el grupo de investigación para sus robots cuadrúpedos.

UNIVERSIDAD POLITÉCNICA DE MADRID
ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES



xiv EXECUTIVE SUMMARY

La implementación exitosa del sistema NMPC, combinada con el manipulador Z1 inte-
grado con visión, marca un avance significativo. Este avance sienta una base sólida para
investigación futura dentro del grupo para mejorar la capacidad del robot de navegar e
interactuar autónomamente con entornos complejos. También abre nuevas posibilidades
para integrar tareas de manipulación más sofisticadas, refinando las estrategias de control
para una mejor adaptabilidad en escenarios SAR dinámicos e impredecibles, y ampliando
la funcionalidad del robot para abordar misiones cada vez más desafiantes.

Palabras clave: Robots con patas, robótica cuadrúpeda, búsqueda y rescate, control
predictivo basado en modelo, control de cuerpo completo, manipuladores móviles, control
basado en visión, apertura de puertas.

Códigos UNESCO:
• 120304 Inteligencia Artificial
• 120311 Software
• 330412 Dispositivos de control
• 330417 Sistemas en tiempo real
• 330419 Robótica
• 330420 Visión por computador
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Chapter 1

Introduction

The present chapter introduces the developed work, providing a brief contextualization
of the project and its motivation. It outlines the work objectives, highlights the main
contributions, and describes the structure of this document.

1.1. Background

The field of robotics has seen significant advancements, particularly in the development
of robots capable of navigating complex terrains. In particular, legged robots have
become invaluable in SAR operations due to their ability to quickly and safely traverse
unstructured environments and access areas that are challenging for traditional wheeled or
tracked robots. Over the past decade, these robots have evolved from simple prototypes
to sophisticated machines capable of autonomous navigation, object detection, and, to
some extent, manipulation.

The RobCib research group, part of the Center for Automation and Robotics (CAR),
has conducted significant research in developing robots for SAR applications. Their work
has primarily focused on enhancing their autonomy for exploring and navigating com-
plex terrains. One of their notable projects is ARTU-R (A1 Rescue Tasks UPM Robot),
designed to assist in victim detection using a combination of Machine Learning (ML) tech-
niques and advanced sensor systems [1]. However, the control system of ARTU-R, which
relied on predefined gait patterns, posed challenges in dynamic and unpredictable
environments typical of SAR operations. Additionally, the robot lacked the capability
to manipulate objects, such as opening doors, which is essential for comprehensive
missions.
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Another significant research effort within RobCib involved the integration of a 6
Degrees of Freedom (DOF) manipulator with ARTU-R, as shown in Figure 1.1. This
project focused on the modeling, simulation, and control of a robotics system combining
the quadruped’s mobility with the manipulator’s dexterity, aiming to enhance the robot’s
capability to perform tasks such as object manipulation in challenging environments [2,
3]. This project leveraged Mixed Reality (MR) through Hololens glasses to provide an im-
mersive control interface, significantly improving operator efficiency and decision-making
in complex environments. The integration allowed for more complex operations, such
as delivering supplies to victims or clearing debris, highlighting the potential of
combining legged robots with manipulators for SAR tasks.

Figure 1.1. Unitree A1 and WidowX-250 manipulator assembly [3].

A key challenge identified in both projects was the need for a more robust control
system that could handle the complexities of real-world SAR environments. The existing
control approaches, while effective for structured environments or specific tasks, struggled
in scenarios requiring rapid adaptation and decision-making, such as those involving ob-
stacle negotiation or manipulation under uncertain conditions.

1.2. Motivation

Building upon the research previously conducted by the RobCib group, this Master’s
Thesis aims to address the limitations observed in earlier control approaches for quadruped
robots in SAR tasks within the lab. Previous efforts predominantly utilized the smaller
A1 quadruped robot, which, despite its effectiveness, relied heavily on predefined gait
patterns. These patterns, while sufficient for basic mobility, lacked the adaptability
required for the complex and dynamic environments typical of SAR operations.
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To overcome these limitations, this thesis will leverage the larger and more capable
Unitree AlienGo robot, named KLARA, equipped with the Z1 robotic arm. The
enhanced capabilities of the AlienGo, combined with the flexibility of the Z1, provide a
robust platform for implementing more advanced control strategies. The focus will be on
applying NMPC to improve the robot’s navigation and manipulation skills, particularly
in executing tasks like autonomous door opening and movement in unstructured environ-
ments. NMPC was chosen for its ability to provide precise control, maintain stability,
and handle dynamic constraints in real-time [4].

Reinforcement Learning (RL) control is, together with NMPC, one of the most ex-
ploited quadrupedal control methods [5, 6]. It offers promising adaptability and learning
capabilities, but also presents challenges such as the “sim-to-real gap” and high compu-
tational demands [7] as it will be seen in Chapter 2. These factors make NMPC a more
suitable choice for the immediate goals of this project. However, RL remains a valuable
alternative and will be explored in a parallel Master’s Thesis.

1.3. Objectives

1.3.1. Main Objective

The primary objective of this Master’s Thesis is to develop and implement a ro-
bust NMPC system for the integrated control of a legged robot, the Unitree AlienGo,
with a Z1 manipulator, aimed at enhancing the robot’s autonomous navigation and manip-
ulation capabilities in SAR environments. This projects seeks to overcome the limitations
of previous control strategies by leveraging the larger and more capable AlienGo platform
to achieve reliable and adaptive performance in complex unstructured environments.

1.3.2. Specific Objectives

In order to accomplish this main objective the project has been divided into the
following secondary objectives, which can be used as control milestones:

• Analyze the existing control systems used in legged robots and identify the limita-
tions in their application to SAR tasks.

• Design and implement a NMPC strategy for the Unitree AlienGo robot, focused on
improving its navigation and obstacle negotiation capabilities.

• Integrate the Z1 manipulator with the AlienGo robot, ensuring seamless coordina-
tion between locomotion and manipulation tasks.

OBJECTIVES 3
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• Develop and simulate test scenarios to validate the performance of the integrated
system in SAR-relevant tasks, such as autonomous door opening.

• Optimize the NMPC parameters and the control architecture to enhance the robot’s
adaptability in dynamic and unpredictable environments.

• Implement and evaluate the performance of the system in real-world conditions
focusing on its ability to autonomously navigate in unstructured environments.

1.4. Work Contributions

The completion of these objectives has involved significant technical and research
achievements. The main contributions of this work are:

• Development and implementation of a NMPC system: Building upon an
external GitHub repository as the foundational base, a robust NMPC strategy was
designed and implemented for the Unitree AlienGo robot. This significantly im-
proved the robot’s navigation and obstacle negotiation capabilities, making it more
effective in complex, unstructured environments typical of SAR operations.

• Integration of the Z1 manipulator with the Unitree AlienGo: The project
successfully integrated the Z1 robotic arm with the AlienGo quadruped in simu-
lation, achieving coordinated control between locomotion and manipulation tasks.
This integration extended the robot’s functionality, enabling it to perform complex
operations such as autonomous door opening in SAR environments. Progress to-
wards physical hardware integration was made too, though it was not finished due
to time constraints.

• Simulation and validation in SAR scenarios: Extensive simulations were con-
ducted using Gazebo to validate the performance of the integrated legged-manipulator
platform. These simulations focused on SAR-relevant tasks, offering valuable in-
sights into the system’s capabilities and limitations in dynamic and unpredictable
environments.

• Real-world testing in a controlled environment: Real-world testing was car-
ried out in a constructed path with various obstacles. Although the tests offered
valuable data on the controller capabilities, they were limited in scope due to time
constraints and the need to share the robot with another project.
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1.5. Structure of the Document

The document is structured into six chapters, each addressing a different aspect of the
project, and four appendixes including additional documentation.

• Chapter 1 – Introduction: Introduces the developed work, contextualizing the
project and describing its motivation. It presents the work objectives, the main
contributions and the document structure.

• Chapter 2 – Literature Review: Examines the existing research and technolog-
ical advancements related to legged robots and their application in SAR operations.
This chapter highlights key control strategies, and the integration of manipulators
with quadruped robots.

• Chapter 3 – Methodology: Details the tools, techniques, and hardware used
throughout the project. This includes the physical components like the Unitree
AlienGo and Z1 manipulator, the software tools such as Robot Operating System
(ROS) and Gazebo, and the NMPC controller foundational base GitHub repository.

• Chapter 4 – Development: Describes the technical implementation of the
project, including the system architecture, simulation modeling, NMPC system,
vision algorithms for door opening, and planner algorithm. The chapter concludes
with system integration, combining all components into a functional whole.

• Chapter 5 – Results and Discussion: Presents the outcomes from simulation
and real-world testing. It evaluates the robot’s performance in non-structured envi-
ronments and tests the NMPC system’s door-opening capabilities. The chapter also
analyzes the results, highlighting successes, limitations, and potential improvements.

• Chapter 6 – Conclusions and Future Work: Summarizes the outcomes of
the project, discussing the achievements, limitations, and potential improvements.
This chapter also suggests directions for future research and development.

The appendixes include the developed GitHub repository used in the project; the defi-
nition of the controller parameters; the study of economic, social, legal, and environmental
impacts, and contribution to Sustainable Development Goals (SDGs); and the temporal
planning and budget of the project.
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Chapter 2

Literature Review

This chapter reviews the literature on legged robots, focusing on their application in
SAR operations. It covers the evolution and classification of legged robots, with an em-
phasis on quadrupeds. The integration of manipulators with these robots is explored,
highlighting their potential to perform complex tasks in unstructured environments. Addi-
tionally, the chapter examines model-based and model-free control strategies, focusing
on Model Predictive Control (MPC). Finally, it reviews how the door-opening problem
has been addressed in the literature.

2.1. Search and Rescue Robotics

2.1.1. Introduction to SAR Operations

SAR operations are crucial in emergencies, focusing on locating and assisting peo-
ple in danger while minimizing exposure to life-threatening conditions [8]. These
time-sensitive missions often occur in hazardous environments, such as disaster-stricken
areas, where human responders face significant risks. The urgency of SAR operations
is underscored by the critical time window after a disaster, with survival rates high-
est within the first 17 hours [9]. However, exceptions exist, such as the 2023 Turkey
earthquake, where victims were rescued 248 hours after the event [10].

Disasters are typically classified as natural (e.g., earthquakes, floods) or human-
made (e.g., structural collapses, attacks), each presenting unique challenges [11]. Natural
disasters affect large areas, while human-made incidents often occur in confined urban
spaces, necessitating Urban Search and Rescue (USAR) efforts [12].

7



TRABAJO FINAL DE MÁSTER - DANIEL SOTELO AGUIRRE
DEVELOPMENT AND INTEGRATION OF A NMPC-CONTROLLED LEGGED-MANIPULATOR PLATFORM FOR SEARCH
AND RESCUE OPERATIONS

Robotics have become vital in SAR operations, particularly in dangerous or in-
accessible situations. Notable examples include the use of robots during the 2001 World
Trade Center collapse [13], the 2011 Fukushima nuclear disaster [14], and the 2017 Mexico
City earthquake [15]. These robots enhance mission effectiveness and safety by aiding in
tasks like victim identification, environmental mapping, and debris removal.

These missions face significant challenges due to the hazardous and unpredictable
environments in which they occur. These challenges include navigating unstable terrain,
identifying victims in low-visibility conditions, and overcoming obstacles like debris
and structural hazards [16]. Robotics plays a crucial role in addressing these challenges
by combining autonomy with teleoperation, enabling precise and adaptive responses
in complex scenarios. Advanced sensors and locomotion systems allow robots to perform
critical tasks such as environmental mapping, victim detection, and debris clearance,
ultimately enhancing the effectiveness and safety of SAR missions.

2.1.2. Classification of Post-Disaster Environments

One of the key developments in SAR operations is the standardization of post-
disaster environments to guide the appropriate selection and deployment of robotic
systems. The National Institute of Standards and Technology (NIST) has defined three
levels of difficulty based on the structural damage and complexity of the environment
[17, 18] as shown in Figure 2.1 [19].

(a) (b) (c)

Figure 2.1. NIST Test Arenas at the Robocup USAR 2004 Competition : (a) Yellow arena,
(b) Orange arena, (c) Red arena [19].

• Yellow Zone: This is the least challenging environment, where the terrain consists
primarily of doors, shutters, and simple obstacles. The ground is uniform, similar
to an office setting. In this scenario, robots with basic mobility can fully explore
the area, making it suitable for robots with limited agility.

• Orange Zone: This medium-difficulty environment features varied ground ma-
terials and includes ramps or stairs, requiring more advanced maneuverability.
Robots operating in this zone must be capable of mapping the environment in real-
time, as the terrain can be reconfigured dynamically.
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• Red Zone: The most complex and unstructured environment, it can undergo real-
time changes, such as a secondary collapse. Victims in this zone are often buried
under rubble. The ground is not only composed of multiple materials but is also
unstable, with obstacles like wood, plastic, or rods that can impede movement.
Robots operating in this environment must be highly adaptable and capable of
navigating these challenging conditions.

2.1.3. Classification of SAR Robots

SAR robots can be classified into several categories based on their operational envi-
ronment, size, weight, payload capacity, and locomotion system. These classifications are
crucial for determining the appropriate robot for specific SAR missions, especially given
the varied and challenging conditions found in post-disaster environments.

2.1.3.1. Operational Environment

SAR robots are often categorized based on the environment they are designed to
operate in [20]. Some examples can be seen in Figure 2.2.

(a) (b) (c)

Figure 2.2. SAR robots for different environments: (a) Foldable UAV from UZH [21], (b)
EMILY USV [22], (c) Mamba UUV from NTNU [23].

• Unmanned Aerial Vehicles (UAVs): These robots provide an aerial view of
disaster areas, making them ideal for covering large regions quickly. UAVs are
particularly useful in natural disasters like floods or avalanches, where they can
rapidly locate victims over expansive areas. However, their flight time and payload
are often limited by battery life and weight restrictions.

• Unmanned Surface Vehicles (USVs) and Unmanned Underwater Vehicles
(UUVs): These robots are designed for operations in aquatic environments. USVs
are used for surface-level inspections, such as coastline surveys after tsunamis, while
UUVs operate underwater to reach depths unsafe for human divers. Communication
and navigation challenges are significant for these robots due to the harsh and often
unpredictable underwater conditions.

SEARCH AND RESCUE ROBOTICS 9
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• Unmanned Ground Vehicles (UGVs): Operating on land, UGVs are crucial for
navigating debris-strewn environments, such as collapsed buildings in urban areas.
These robots vary widely in size and capability, from small, agile units that can
squeeze through tight spaces to larger models designed for heavy-duty tasks like
debris removal.

2.1.3.2. Size and Weight

Another important classification of SAR robots focuses on their size and weight [24],
which directly impacts their mobility and the types of environments they can navigate:

• Man-packable robots: These are small, lightweight robots that can be carried
and deployed by a single person. Their compact size makes them ideal for navigating
narrow spaces within collapsed structures or other confined areas.

• Man-portable robots: Slightly larger than man-packable robots, these can be
transported by two team members or in small vehicles. They balance portability
with increased functionality, such as carrying more sensors or more robust commu-
nication equipment.

• Maxi robots: These large, robust robots require special transportation. They are
typically used in scenarios requiring significant power, such as moving large debris
or performing extensive mapping of a disaster area.

2.1.3.3. Payload Capacity

The payload capacity of SAR robots is a critical factor, determining the types and
amounts of equipment they can carry, such as cameras, sensors, communication devices, or
robotic arms for manipulation. Robots with higher payload capacities can carry more
advanced equipment, making them suitable for complex tasks like environment mapping
[25] or victim detection [26]. Smaller robots, with limited payloads, are often used for
rapid initial assessments or tasks that require high agility.

2.1.3.4. Locomotion System

The locomotion system of SAR robots is another critical factor, particularly for UGVs,
which must navigate various terrains [27]. Figure 2.3 shows some examples.

• Wheeled robots: Known for their stability, speed, and energy efficiency, wheeled
robots perform well on flat surfaces but struggle with uneven terrain. Some designs
incorporate adaptive wheels to improve terrain versatility.

• Tracked robots: They excel in rough and uneven environments, such as debris-
filled areas, due to their superior traction and stability. This makes them ideal for
heavily damaged urban areas.
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• Legged robots: These robots, inspired by animals, offer unmatched adaptability
to complex terrains. Bipedal, quadrupedal, hexapod, and even arachnid-inspired
designs allow these robots to traverse uneven, unstable, and cluttered environments.
Legged robots are gaining popularity in SAR missions due to their versatility and
ability to navigate obstacles that would hinder other robot types.

(a) (b) (c)

Figure 2.3. SAR UGVs with different locomotion systems: (a) Wheeled SUMMIT-XL
from Robotnik [28], (b) Tracked Packbot from iRobot [29], (c) C-legged
CLHERO from RobCib [30].

2.2. Quadruped Robots

Quadruped robots have emerged as a promising solution for SAR operations due to
their ability to navigate complex, unstructured environments. Inspired by biological coun-
terparts like dogs, these robots excel where wheeled or tracked robots struggle. Compared
to bipedal robots, quadrupeds offer greater stability and reliability on uneven terrain.
While hexapods provide stability, quadrupeds are faster and more energy-efficient.

2.2.1. Historical Background and Evolution

The development of quadruped robots has a rich history, beginning with early me-
chanical prototypes in the late 19th century and evolving into today’s highly sophisti-
cated machines. The first notable attempt was the “Mechanical Horse” created by Rygg
in 1893 [31], which laid the groundwork for later innovations. The mid-20th century saw
advancements such as the “Walking Truck” [32], which introduced the concept of indi-
vidual leg control. Significant progress was made in the 1980s and 1990s with the work
of Marc Raibert and the MIT Leg Laboratory, leading to the development of dynamic
quadruped robots capable of running and jumping. The introduction of robots like
BigDog [33] by Boston Dynamics in the early 2000s marked a turning point, showcasing
the potential of quadruped robots in real-world applications. Recent developments, such
as Spot by Boston Dynamics [34] and ANYmal by ETH Zurich [35], represent the cur-
rent state-of-the-art, featuring advanced sensors, autonomy, and robustness suitable for
various challenging environments.

QUADRUPED ROBOTS 11
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(a) (b) (c)

Figure 2.4. Examples of quadruped robots: (a) BigDog by Boston Dynamics [33], (b) Spot
by Boston Dynamics [34], (c) ANYmal by ANYbotics and ETH Zurich [35].

2.2.2. Applications

Quadruped robots have shown significant promise in SAR applications, particularly
through their participation in drills and competitions. While no documented cases of
quadruped robots being deployed in actual SAR missions exist, their potential has been
explored extensively in controlled environments. For example, the ANYmal robot has
been tested in industrial inspection and SAR missions during the ARGOS challenge and
the European Robotics League (ERL) Emergency Robots competition [36].

The DARPA Subterranean Challenge has been a significant platform for ad-
vancing quadruped robots in SAR. In this competition, robots like Boston Dynamic’s
Spot have been used to explore unstructured, poorly lit environments autonomously [37].
These robots have excelled in navigating difficult terrains, overcoming communication
challenges, and identifying objects of interest. The combination of legged robots with
aerial capabilities, as demonstrated by multimodal systems, further enhances versatil-
ity and effectiveness [38].

In addition to SAR missions, quadruped robots have found applications across a variety
of other fields due to their versatility. In industrial settings, they inspect hazardous
environments like pipelines and remote infrastructure [39]. In scientific exploration,
these robots navigate challenging terrains such as caves and volcanic craters, collecting
data where humans cannot [40]. Agriculture benefits from their ability to monitor crops
and assist in precision farming [41], while in security and defense they are used for
reconnaissance and surveillance in difficult terrains [42].

2.3. Quadruped Manipulators

The integration of manipulation capabilities into quadruped robots significantly en-
hances their functionality, allowing them to interact with their environment beyond
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simple locomotion. By combining the mobility of legged robots with the precision of
robotic arms, these machines can navigate challenging terrains and perform complex
tasks, making them ideal for environments like disaster zones and rugged landscapes.
As research advances, quadruped manipulators are increasingly capable of diverse tasks,
from basic pushing to intricate operations using dedicated arms, opening new possibilities
in search and rescue, inspection, and agriculture applications.

2.3.1. Manipulation Capabilities

Quadruped robots exhibit a range of manipulation capabilities, depending on their
design and intended applications. These capabilities can be broadly categorized into
non-grasping manipulation, and manipulation using dedicated arms [43].

2.3.1.1. Non-Grasping Manipulation

Non-grasping manipulation refers to the ability of quadruped robots to interact with
their environment without using traditional grippers. Instead, these robots use their
bodies or legs to push, kick, or nudge objects, which is particularly useful for tasks
where precision is less critical, such as clearing debris or repositioning obstacles.

2.3.1.2. Dedicated Manipulation Arm

For more complex and precise tasks, quadruped robots can be equipped with dedicated
manipulation arms. These arms, designed with multiple degrees of freedom, enable the
robot to perform delicate operations like opening doors, picking up objects, or using
tools. Integrating these arms requires advanced control systems to maintain the robot’s
balance and stability, especially when combining locomotion with manipulation. The
addition of dedicated arms significantly broadens the functionality of quadruped robots,
allowing them to tackle a wider range of applications across various fields. Figure 2.5 shows
some examples and Table 2.1 [44] presents some study cases found in the literature.

(a) (b) (c)

Figure 2.5. Examples of quadruped manipulators: (a) Jueying X20 by Deep Robotics [45],
(b) AlienGo with Z1 by Unitree [46], (c) Spot by Boston Dynamics [47].
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Quadruped Quadruped’s Maximum Robotic DoF Arm’s Continuous Planning ApplicationsRobot Weight (kg) Payload (kg) Arm Weight (kg) Payload (kg) Approach

A1 [3] 12 5 WidowX 250 6 2.63 0.25 SS SAR
AlienGo [48] 21.5 13 Unitree Z1 6 4.3 2 SS Fire rescue
AlienGo [49] 21.5 13 ViperX 300 5 3.63 0.75 CS Opening doors
ANYmal [50, 51] 30 15 Kinova Jaco 2 6 4.4 1.6 SS/CS Object carrying
ANYmal C [4] 30 15 DynaArm 4 - 7 CS Object transport
Self-designed [52] 205 - Self-designed 5 35 24 SS Grasping
Spot [53] 32.7 14 Kinova Gen3 7 8 4 SS Dynamic grasping
Spot [47] 32.7 14 Spot Arm 5 8 5 CS Object transport

Table 2.1. Quadruped manipulator study cases found in the literature [44].

2.3.2. Integration Approaches

The integration of manipulation capabilities into quadruped robots can be approached
in two main ways: Separate Systems (SS) and Combined Systems (CS) [54]. The
planning approach followed for each study case presented in Table 2.1 is also shown in
the table. Each approach offers distinct advantages and challenges depending on the
complexity of the tasks and the operational environment.

2.3.2.1. Separate Systems

In the separate systems approach, the quadruped robot’s locomotion and manip-
ulation functions are treated as independent subsystems. The robot first moves
into position using its legs, and once stationary, the dedicated manipulation arm or legs
perform the required task. This approach simplifies control since the movement and
manipulation tasks are handled sequentially, reducing the complexity of maintaining bal-
ance and stability. However, the robot’s ability to perform simultaneous locomotion and
manipulation is limited, which can be a drawback in dynamic environments where
both movement and interaction are required concurrently.

Despite its simplicity, this method has notable limitations. For instance, poor place-
ment of one subsystem can make the final destination unreachable, and while each sub-
system may be optimized individually, this doesn’t always lead to a globally optimal
solution. Additionally, the approach doesn’t fully utilize the system’s capabilities, as mu-
tual interferences between the quadruped and the manipulator can be difficult to predict
and manage. However, the simplicity of control in this method does offer a stable and
robust solution, even if it doesn’t leverage the full potential of the system.

2.3.2.2. Combined Systems

The combined systems approach treats the quadruped robot and its manipulation
capabilities as a single, integrated system. In this approach, locomotion and manip-
ulation are coordinated simultaneously, allowing the robot to move and interact with
objects in a more fluid and dynamic manner. This method requires more sophisticated

14 LITERATURE REVIEW



UNIVERSIDAD POLITÉCNICA DE MADRID
ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES

control algorithms to manage the interactions between the robot’s body and its manip-
ulator, ensuring stability and balance are maintained throughout the operation. While
this approach is more complex, it enables the robot to perform advanced tasks, such as
navigating rough terrain while carrying or manipulating objects.

This approach, though powerful, comes with its own set of challenges. It requires
significantly more computing power and energy, and the paths generated are not always
optimized, often necessitating additional optimization algorithms. If not properly im-
plemented, solutions can become unstable and less robust to interferences. However, by
using the system’s full capabilities, it allows for complex movements and multi-tasking, al-
though achieving a robust solution remains difficult, especially without causing instability
in the robot.

2.4. Control Strategies

Effective control strategies are crucial for the successful operation of quadruped robots,
directly influencing their ability to navigate complex environments and perform diverse
tasks. This section explores the key control methodologies employed in quadruped robotics.

2.4.1. Gait and Motion Control

Gait and motion control are fundamental aspects of quadruped robots, directly influ-
encing their stability, efficiency, and adaptability across various terrains. Understanding
the principles of gait is essential for optimizing the robot’s performance in both static and
dynamic environments.

2.4.1.1. Gait

Gait refers to the coordinated movement pattern of a quadruped robot’s limbs
during locomotion [5]. Quadruped robots typically have 12 DOF, with each leg hav-
ing three joints. This configuration allows for precise control and complex movements,
mimicking the locomotion of animals like dogs or horses. The legs are identified using
the nomenclature LH (left hind), RH (right hind), LF (left front), and RF (right front),
which standardizes discussions and control strategies.

Selecting the right gait is crucial for effective navigation and maintaining stability
across various terrains. Key principles include stride, duty factor, and relative phase.
The stride is the distance of the torso movement during one gait cycle. Its length and
timing are vital for determining the robot’s speed and smoothness. The duty factor is
the percentage of the gait cycle during which a foot stays on the ground, with higher duty
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factors enhancing stability but potentially reducing speed. Relative phase refers to the
timing differences between leg movements, which defines the type of gait, such as walking
or trotting.

Gaits are categorized as static or dynamic. Static gaits, like walking, keep at least
three legs on the ground, providing excellent stability but slower movement, ideal for
rough terrains. Dynamic gaits, such as trotting or galloping, involve phases where
fewer legs are grounded or all are airborne, allowing faster movement but requiring more
advanced control to maintain balance.

The choice of gait directly impacts a robot’s stability, speed, energy efficiency, and
obstacle-handling capability. In dynamic environments, the robot must adapt its gait in
real-time based on the terrain and tasks [55]. Effective gait strategies are therefore essen-
tial for optimizing the robot’s overall performance and ensuring smooth, stable movement
across various conditions.

Figure 2.6. Gait graphs for quadrupedal robots, adapted from [5].

2.4.1.2. Motion Control

Motion control in quadruped robots is pivotal for maintaining stability, executing
precise movements, and adapting to various terrains and tasks. It encompasses the al-
gorithms and strategies that manage how the robot’s legs move in coordination
with each other, responding dynamically to internal and external forces. It is considered
to be a tough challenge because the quadruped robot is a high-dimensional nonlinear
time-varying system with floating base [56]. Motion control methods can be broadly
classified into model-based and model-free approaches, each with distinct advantages
and trade-offs. Figure 2.7 represents a generic simplified control architecture usually used
to control quadruped manipulators.
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Figure 2.7. Simplified framework block diagram [44].

The system starts with the input of the desired pose or motion, which defines the
robot’s trajectory. This input feeds into the motion planner, which generates a feasible
path considering the robot’s model and environmental constraints. The optional opti-
mization block, often integrated within the motion planning process such as in MPC,
further refines the trajectory. The controller then converts the optimized trajectory into
specific joint commands. A feedback loop provides ongoing updates to the controllers,
enabling adaptive control and dynamic responses.

2.4.2. Model-Based Control

Model-based control methods use mathematical models of the robot’s dynamics to
plan and execute motions. These methods provide high precision and are essential for
tasks requiring stability and predictability.

2.4.2.1. Zero Moment Point (ZMP) Control

ZMP control is a fundamental method for maintaining the stability of quadruped
robots during static gaits [57]. The ZMP criterion ensures that the projection of the
robot’s Center of Mass (CoM) falls within the support polygon formed by its feet. This
method is crucial for tasks requiring stable walking, particularly on uneven terrain. By
modeling the robot as a cart-table system, the ZMP can be calculated and used to plan
stable torso trajectories. Figure 2.8a shows the car-table ZMP model.

2.4.2.2. Spring-Loaded Inverted Pendulum (SLIP) Model

The SLIP model is widely used to control dynamic gaits, such as trotting and gallop-
ing [58]. It captures the energy dynamics during movement, using a spring-like mechanism
to model leg compliance and energy recovery. Raibert’s three control method [59], which
divides motion into forward movement, jumping, and posture adjustment, is a notable
application of the SLIP model. Figure 2.8b shows the SLIP model.

CONTROL STRATEGIES 17



TRABAJO FINAL DE MÁSTER - DANIEL SOTELO AGUIRRE
DEVELOPMENT AND INTEGRATION OF A NMPC-CONTROLLED LEGGED-MANIPULATOR PLATFORM FOR SEARCH
AND RESCUE OPERATIONS

2.4.2.3. Virtual Model Control (VMC)

VMC simplifies the control of complex movements by using virtual forces and com-
ponents like springs and dampers [60], as shown in Figure 2.8c. This intuitive control
method allows for effective interaction with the environment, and reduces the compu-
tational demands while offering flexibility in adjusting control parameters.

(a) (b) (c)

Figure 2.8. Model-based control strategies quadruped models [5]: (a) ZMP model, (b)
SLIP model, (c) VMC model.

2.4.2.4. Inverse Dynamics Control

Inverse dynamics control calculates the required joint torques based on desired joint
motions and the robot’s dynamic model [61]. This method is a direct way to achieve
active compliance control, which can reduce the stiffness of the robot’s motion and
enhance stability during interaction with external forces. The approach involves solving
the dynamic equations of the robot, considering the interaction forces, and adjusting the
joint torques accordingly. It is effective but requires highly accurate modeling and
real-time application might be hard due to its computational complexity.

2.4.2.5. Model Predictive Control (MPC)

MPC is an advanced control strategy that has gained significant traction in the
field of robotics [62, 63], especially for complex systems like quadruped robots, thanks
to advancements in computational power. MPC operates by predicting future states
of the robot based on a dynamic model and optimizing control inputs over a finite
time horizon [64]. This predictive capability allows MPC to handle constraints and
make real-time decisions that optimize the robot’s performance across various tasks, such
as dynamic locomotion and obstacle avoidance. Some of the core principles of MPC are:

• Prediction horizon: MPC uses a model of the robot’s dynamics to predict future
states over a defined horizon, T . At each time step, the control inputs are optimized
to minimize a cost function J , which typically includes terms for tracking errors:
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J = min
u(·)

[
Φ(x(T )) +

∫ T

0
L(x(t),u(t), t) dt

]
(2.1)

where x(t) represents the state vector; u(t), the control input vector; L(·) is a time-
varying running cost or Lagrangian term (ensures optimal performance throughout
the process); and Φ(·) the cost at the terminal state x(T ) or Mayer term (ensures
the system reaches the desired final state). The optimization process is subject to
the system initial state, x0, and the system dynamics defined by function f :

x(t0) = x0

ẋ(t) = f(x(t),u(t), t)
(2.2)

• Handling constraints: MPC excels in environments where constraints are cru-
cial, such as maintaining stability, avoiding collisions, and ensuring that the robot’s
actuators operate within safe limits. These constraints can be explicitly included in
the optimization problem, ensuring operation within physical limits.

• Optimization-based approach: Since the quadruped robot’s dynamics and con-
straints are inherently nonlinear, it is a NMPC optimization problem. In
addition to this, it is a switched system, that is, it consists of a finite number
of dynamical subsystems subjected to discrete events which cause transition be-
tween these subsystems [65], something which happens when walking (different foot
contact states). This problem can be formulated according to [4] as:



min
u(·)

[∑
i

ϕi(x(ti+1)) +
∫ ti+1

ti
li(x(t),u(t), t) dt

]

s.t. x(t0) = x0 Initial state

ẋ(t) = fi(x(t),u(t), t) System flow map

x(t+i+1) = j(x(ti+1)) System jump map

g1i(x(t),u(t), t) = 0 State-input equality constraints

g2i(x(t), t) = 0 State-only equality constraints

hi(x(t),u(t), t) ≥ 0 Inequality constraints

for ti < t < ti+1 and i ∈ {0, 1, · · · , I − 1}

(2.3)

In the problem, ti is the switching time, and tI is the final time. For each mode,
the nonlinear cost function consists of a pre-jump cost, ϕi(·), that indicates the
desirability of ending states before a switch occurs; and a cumulative cost over each
interval, li(·), that accounts for example for the error from a reference trajectory.
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The system flow map is driven by the system dynamics fi(·), and the system jump
map, j(·), defines how the state x changes discontinuously at the time of switching
ti+1, reflecting changes due to new foot contact state.

NMPC operates on a receding horizon principle, where the optimization is per-
formed over a finite future window. Only the first control input is applied, and
the process is repeated at each time step with updated state information. Figure
2.9 illustrates the receding horizon principle for MPC controllers [66].

Figure 2.9. Receding horizon principle applied in MPC controllers [66].

To solve this efficiently, the problem is often tackled using Sequential Quadratic
Programming (SQP) [67]. In SQP, the nonlinear problem is approximated by
a series of Quadratic Program (QP) problems [68]. Each QP problem is solved
iteratively, with the solution providing an update to the trajectory or control inputs.
The SQP process involves the following steps:

1. Linearization: Each iteration starts by linearizing the nonlinear dynamics
and constraints around the current estimate or trajectory. This involves cal-
culating the derivatives of functions relative to the state and control variables.

2. Quadratic Programming (QP): The linearized problem is then solved as
a QP. The QP problem typically minimizes a quadratic objective function
subject to linear constraints. Different numerical solvers exist but the most
commonly used are Interior Point Methods (IPMs).

3. Iterative Refinement: The process repeats, with each iteration refining the
trajectory and control inputs based on the updated solutions. Convergence is
typically determined by thresholds on the norm of the Lagrangian gradient and
the feasibility of the constraints.

In advanced quadruped robots, MPC is often combined with Whole-Body Control
(WBC) [69, 70]. MPC predicts the robot’s future states and provides optimized tra-
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jectories, while WBC ensures that these trajectories are executed effectively, taking into
account the robot’s full-body dynamics and task priorities. WBC is a framework designed
to manage the simultaneous control of multiple tasks in a robot with a complex structure,
such as a quadruped. It integrates the control of locomotion, manipulation, and posture
stabilization, allowing the robot to perform coordinated actions across its entire body.

WBC organizes the robot’s tasks into a strict hierarchy based on their importance.
High-priority tasks, such as maintaining balance, are solved first. Lower-priority tasks,
such as specific limb movements, are handled afterward in the null space of higher-priority
tasks. This ensures that critical functions are never compromised [56]. The frame-
work solves these tasks using a cascade of QP problems, where each QP corresponds to a
different priority level. The solution to a higher-priority QP shapes the feasible space for
the lower-priority tasks.

2.4.3. Model-Free Control

Model-free control strategies are gaining popularity in the field of robotics due to their
ability to adapt to complex and dynamic environments without relying on detailed
mathematical models of the robot’s dynamics. Unlike model-based approaches, which re-
quire precise system modeling and are often computationally intensive, model-free control
methods are generally more flexible and can learn directly from data. These approaches
are particularly valuable in scenarios where the robot must operate in unpredictable or
unstructured environments. The two primary categories within model-free control are
Central Pattern Generators (CPG) and intelligent control methods.

2.4.3.1. Central Pattern Generator (CPG) Control

Central Pattern Generators (CPGs) are inspired by the neural circuits found in ani-
mals that generate rhythmic outputs. CPG-based control is a bionic approach that
constructs oscillators to produce rhythmic motions and coordinate the movement of the
robot’s legs [71]. This method is highly effective for dynamic motion control, offering
simplicity and flexibility in generating various gait patterns. CPG controllers not only
synchronize leg movements but also enable smooth gait transitions with minimal control
input. It is particularly suitable for rough terrain locomotion, where the ability to adapt
to varying conditions is essential. The quadrupeds from RobCib, namely KLARA (walK-
ing Legged sAr Robot) and ARTU-R (A1 Rescue Task UPM Robot), use this locomotion
method by default as provided by Unitree. This control method proved to be insufficient
in ensuring stability during testing in harsh conditions, leading to frequent falls.
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2.4.3.2. Intelligent Control Methods

Intelligent control methods leverage computational algorithms to handle the com-
plexity of robotic control without relying on predefined models. This category includes
techniques such as fuzzy control, neural networks, genetic algorithms, and RL.

• Fuzzy control: Translates sensor inputs and internal states into fuzzy sets, applies
a set of fuzzy rules to determine the appropriate actions, and then converts these
fuzzy conclusions back into precise control commands [72].

• Neural networks: These networks adjust the robot’s actions based on learned
models from extensive training data, enabling adaptive and efficient responses to
dynamic environments [73].

• Genetic algorithms: Simulate natural selection processes iteratively adjusting pa-
rameters for selecting the most effective strategies over generations based on fitness
criteria [74].

• Reinforcement Learning (RL): It has become a leading approach in develop-
ing control policies for quadruped robots, particularly in scenarios requiring adap-
tive and robust locomotion across diverse terrains [75]. By allowing robots to
learn through interaction with their environment, RL provides a powerful method
for optimizing behaviors without the need for explicit robot dynamic models (though
model-based RL also exists).

Figure 2.10. ANYmal learning to walk through RL in Isaac Gym [76].

In RL, the robot, or agent, learns by interacting with its environment through a
cycle of states, actions, and rewards. The agent observes its current state, selects
an action based on a policy1, performs the action, and then receives feedback
in the form of a reward. The goal is to learn a policy that maximizes the total
accumulated reward over time, guiding the robot to perform complex behaviors.

1 Strategy that dictates the agent’s actions based on its current state.
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Deep Reinforcement Learning (Deep RL) has transformed legged locomotion by
enabling quadruped robots to learn complex behaviors such as walking, running,
and jumping. A key advancement in this field is NVIDIA’s Isaac Gym [76], a
GPU-accelerated simulator that drastically reduces the time required for training
RL policies, allowing robots to learn basic tasks in minutes [77]. Part of the broader
Isaac Lab platform, Isaac Gym provides essential tools for simulating and training
robotics systems. Figure 2.10 shows ANYmal learning to walk in Isaac Gym.

While these advancements have accelerated research, they rely heavily on com-
putational power rather than breakthrough in RL algorithms. This dependence
highlights challenges like the “sim-to-real” gap2 [7], data inefficiency, and high com-
putational demand. To address these, techniques like “learning-by-cheating”3 are
used to simplify training in stages [78]. Recent innovations have expanded RL ap-
plications, enabling quadruped robots to navigate complex terrains, recover from
disturbances, and perform tasks like object manipulation.

2.5. Door Opening with Robotic Systems

Autonomous door opening remains a complex challenge in robotics, requiring the
integration of advanced perception, control, and manipulation strategies.

2.5.1. Handle Detection and Grasping Pose Estimation

Robotic door opening often begins with a reliable detection and localization of the
door handle. Though traditional methods relied heavily on geometric features and edge
detection techniques to identify handles, they often struggled with variability in handle
shapes, sizes, and lighting conditions. More recent approaches leverage deep learning,
particularly Convolutional Neural Networks (CNNs), to improve the robustness
and accuracy of the handle detection [79, 80]. These models are trained on large datasets
of images, enabling them to generalize across different environments and handle types.
Figure 2.11a shows the 3D detection and localization of a door handle using CNNs.

In addition to detecting the handle, estimating the correct grasping pose is crucial
for successful manipulation. Point cloud data from RGB-D cameras4 is commonly used in
this process. A popular approach involves filtering the Region of Interest (ROI) around
the detected handle using Random Sample Consensus (RANSAC) algorithm to

2 Difference between the robot’s behavior in simulation and its performance in the real world.
3 Imitation learning approach where a RL teacher is first trained with privileged information, followed
by deriving a student policy based on visual inputs.
4 Cameras that capture both color (RGB) images and depth data simultaneously.
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differentiate between inliers (door plane) and outliers (handle) as shown in Figure 2.11b
[81]. The handle’s position is then determined as the centroid of the outliers. This method
effectively isolates the handle from the door, allowing the robot to compute the handle’s
pose accurately relative to the door’s plane. The grasping pose is calculated through a
transformation matrix derived from the handle’s centroid and the door plane’s normal
vector, enabling precise end-effector placement for grasping.

(a) (b)

Figure 2.11. Handle detection and localization: (a) Handle detection through CNNs [82],
(b) RANSAC algorithm application [81].

2.5.2. Model-Based Inference of Door Kinematics

Understanding the kinematic model of a door is essential for planning and execut-
ing the appropriate manipulation strategy for door opening. Doors generally fall into two
primary kinematic categories: prismatic (sliding) and revolute (hinged), each requiring
different parameters for accurate identification and subsequent manipulation [81]. For
revolute doors, the model parameters typically include the center of rotation, the ra-
dius of the door’s arc, and the plane of rotation. For prismatic doors, the focus is on
identifying the direction and extent of translational motion.

Identifying which model a door adheres to is crucial for the robot to execute the correct
motion. The inference of these kinematic models presents significant challenges due to the
presence of noise and outliers in sensor data, which can result from environmental factors
or sensor inaccuracies. Once the kinematic model is identified, it serves as the basis for
planning the robot’s motion.

2.5.3. Control Strategies

Door opening is a complex task for robotic systems, requiring precise coordination,
adaptability to different door types, and the ability to manage dynamic environments.
Traditional control methods, such as MPC, have been widely used for such tasks, but
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they face limitations in certain unstructured environments [4, 67, 83]. Recently, RL
methods, particularly those using Proximal Policy Optimization (PPO), have been
explored to address these challenges [79, 84].

Traditional methods like MPC have proved effective in certain scenarios, being highly
reliable in predictable environments. In door-opening tasks, MPC can generate
control inputs that ensure smooth and stable interaction by predicting the door’s behavior
over a time horizon. When used with a hierarchical WBC, the robot is able to maintain
balance while applying the necessary force to open a door. An MPC controller can also be
used to track pre-computed offline trajectories instead of acting as a planner [83], which
enables more optimized interactions but at the cost of losing real-time processing.

RL PPO algorithm is well-suited for continuous and high-dimensional action spaces
typical of robotic manipulation tasks. PPO provides stable and efficient learning,
making it ideal for tasks requiring precise coordination and adaptability, such as door
opening. The state space includes joint positions and velocities, the relative position of
the end effector to the door handle, and sensor readings like force and torque. The reward
functions are designed to guide the robot in learning effective door-opening strategies such
as proximity rewards, force control rewards to avoid damage or task completion rewards.

2.5.4. Advanced Manipulation Techniques

Door manipulation involves challenges related to the high degrees of freedom involved.
Researchers have developed the concept of “documented objects”, where robots are
provided with explicit instructions on how to interact with objects like doors [85]. This
concept simplifies the planning process by reducing the search space for possible configu-
rations, enabling more efficient task execution.

Since the kinematic door model parameters might not be completely accurate, force
control and compliance are critical for managing environmental uncertainties during
door manipulation [79]. Advanced techniques such as compliant motion allow robots to
adjust their actions based on real-time feedback, ensuring safe and effective interaction
with doors. This is particularly important in tasks involving dynamic forces, such as
opening a spring-loaded door while maintaining stability during movement.
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Chapter 3

Methodology

This chapter presents the hardware and software components used to develop and
implement the project. The hardware setup includes the Unitree AlienGo quadruped
robot, the Unitree Z1 manipulator, and two depth cameras. On the software side, the
ROS framework serves as the backbone, supporting simulation and visualization through
tools such as Gazebo and RViz. Additionally, a base MPC GitHub repository is uti-
lized as foundation for the controller development, while CNNs are employed for robot’s
perception algorithms.

3.1. Hardware Equipment

The main hardware equipment utilized in this project is the Unitree AlienGo robot
KLARA. This robot was chosen due to its superior payload capacity and enhanced sta-
bility with respect to the Unitree A1 robot ARTU-R. In addition to the quadruped, the
Unitree Z1 manipulator will be employed to perform the manipulation tasks.

3.1.1. Unitree AlienGo Quadruped Robot

The AlienGo robot by Unitree Robotics, shown in Figure 3.1, is a quadruped with
12 DOF, equipped with 12 high-torque motors capable of advanced locomotion tasks.
Weighing approximately 20 kg, with a width of 31 cm and a length of 65 cm, the AlienGo
can carry loads up to 13 kg and achieve stable movement even in challenging envi-
ronments with a maximum speed of around 1.8 m/s [46]. Among its most notable
features are:

27



TRABAJO FINAL DE MÁSTER - DANIEL SOTELO AGUIRRE
DEVELOPMENT AND INTEGRATION OF A NMPC-CONTROLLED LEGGED-MANIPULATOR PLATFORM FOR SEARCH
AND RESCUE OPERATIONS

Figure 3.1. AlienGo robot [46].

• Robust structure: The AlienGo is designed to withstand impacts and maintain
stability, even when subjected to external disturbances. This makes it particularly
suitable for operations in unstructured environments.

• Developer’s version: The robot is equipped with two onboard computers that
support connections via two High Definition Mutimedia Interface (HDMI) ports, two
Ethernet ports, and two Universal Serial Bus (USB) 3.0 ports, enabling a wide range
of customizations and remote operations. This version allows developers to program
directly in C/C++ and integrate with ROS. Additionally the robot accounts with
several power outputs of 5, 12 and 19 V.

• Advanced Control Architecture: The AlienGo features a tri-layer control sys-
tem. It includes a soft real-time x86 control board for sensor setup and execution,
a non-real-time ARM board (NVIDIA Jetson TX2) for auxiliary modules, and a
hard real-time control board for critical operations. The latter ensures the robot’s
stability and balance, accessible only via the remote controller. Figure 3.2 shows
the robot’s architecture scheme.

Figure 3.2. AlienGo robot architecture [44].

28 METHODOLOGY



UNIVERSIDAD POLITÉCNICA DE MADRID
ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES

• Sport mode: The robot includes two operational modes, with the Sport Mode
3.0 offering smoother and more stable movement, particularly useful for navigating
uneven terrain and overcoming obstacles. This mode enhances the robot’s capability
to perform dynamic tasks while maintaining balance.

• Ease of connectivity: Users can connect to the robot’s system either through a
Wi-Fi network generated by the robot or via an Ethernet cable, offering flexibility
in how the robot is controlled and monitored.

• Sensors Integration: The robot accounts with encoders and gyroscopes on
each joint and four foot force sensors to detect whether or not each foot is in
contact with the ground. It also has an Inertial Measurement Unit (IMU) for
measuring the CoM accelerations and angular velocities. Additionally, the robot
supports a wide variety of sensors such as Light Detection and Ranging (Li-
DAR), RGB-D, thermal or multispectral cameras. KLARA has two depth and one
visual odometer camera. However, for this work, only the RGB-D camera mounted
on the Z1 manipulator, the visual odometry camera and one depth D-435 camera
connected to the AlienGo will be used as described in the next sections.

• Extended battery life: The robot incorporates a 12.600 mAh battery that enables
it to operate between 2.5 and 4 hours, depending on its locomotion demands.

3.1.2. Unitree Z1 Manipulator Robot

The Unitree Z1 manipulator was chosen for its integration with the AlienGo quadruped
for several reasons. First, because it is specifically designed for seamless integration with
Unitree’s quadruped robots, ensuring optimal communication, power management, and
synchronization. Additionally, it has more capabilities than the WidowX 250 robotic
arm tested in previous works with ARTU-R [2, 3].

The Unitree Z1 manipulator is a 6-DOF robotic arm, in contrast with the 5 DOF
of the WidowX 250, made of aluminum alloy, ensuring a balance between durability and
weight [86]. With a total weight of 4.5 kg, it offers a maximum load capacity ranging
from 2 kg in air to 3-5 kg under more stable conditions, making it suitable for a variety
of tasks in dynamic environments. The arm has a maximum reach of 730 mm, with a
joint range of motion that allows for flexible and precise operations. It is equipped with
advanced safety features, including torque and overload protection, making it reliable for
use in unpredictable environments. The arm’s operation is managed through an Ethernet
connection, with power supplied at 24 V and a current requirement of over 20 A. The
arm’s Software Development Kit (SDK) supports real-time control frequencies of up to
300 Hz. Figure 3.3 shows both the Z1 arm and its integration with the AlienGo.
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(a) (b)

Figure 3.3. Integration of Unitree AlienGo quadruped and Z1 manipulator [86]: (a) Uni-
tree Z1 manipulator, (b) Z1 manipulator mounted on AlienGo quadruped.

3.1.3. Depth Cameras

As commented in the previous section, two depth cameras have been used in this
work, the SR305 Camera mounted on the Z1 arm and the D435 located on the front of
the robot.

3.1.3.1. Intel RealSense SR305 Camera

As it was seen in the literature, many works employ a RGB-D camera attached to
the robotic arm to perform the manipulation tasks [79, 81]. The Intel RealSense SR305
camera [87] was selected for this project to be attached to the Z1 manipulator for its
practicality and cost-effectiveness. Although its range is not as extensive as the Intel
RealSense D435, the SR305 provides sufficient functionality for successful door-opening
tasks. The decision to use the SR305 was also influenced by its availability in the lab.

This depth camera is designed for short-range depth perception, making it suitable
for applications where precise and detailed 3D imaging is essential within a confined
space, such as detecting and interacting with door handles. The SR305’s performance,
though optimized for ranges between 0.2 and 1.5 meters, is adequate for the controlled
environments in which the manipulator will operate. Additionally, its compatibility with
the existing system and support for ROS made it an easy choice for the project’s needs.

It is equipped with two main types of sensors: a color sensor and an infrared IR
sensor. These sensors work together to provide both depth and color information. The
color sensor captures 1920×1080 high-resolution RGB images, providing detailed color
information about the environment. The IR sensor, in conjunction with an IR projector,
is responsible for capturing depth information by projecting an infrared light pattern
onto the environment. The reflected IR light is then captured by the IR sensor, and the
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Figure 3.4. Intel RealSense SR305 Camera [87].

distortion in the light pattern is used to calculate the distance between the camera and
the objects in its field of view, resulting in a 640×480 depth image. This camera will
be used for close look at the door handle height and its ideal for tracking the object to
be manipulated.

3.1.3.2. Intel RealSense D435 Camera

The Intel RealSense D435 camera [87] was selected to be mounted on the robot’s base
for its excellent depth perception capabilities over a wider field of view and longer range
compared to the SR305 model. This model is essential for the project’s requirements of
accurately assessing the base’s position during locomotion tasks. The D435 employs stereo
vision technology with two global shutter sensors, capturing depth and RGB information
simultaneously, making it highly efficient for real-time applications.

This depth camera provides a significantly larger depth field of view, with a diagonal
FOV exceeding 90 and supports depth streaming at resolutions up to 1280×720 with a
frame rate of 90 FPS. It is capable of capturing RGB images at 1920×1080 resolution.
The D435 can operate effectively over a depth range of 0.2 meters to more than
10 meters, depending on lighting conditions, which makes it suitable for environments
where varying distances and object sizes are involved [121]. Figure 3.5 shows the employed
camera and its location within the quadruped.

Figure 3.5. Intel RealSense D435 Camera [121].

The Intel RealSense D435’s broad depth perception capabilities are particularly useful
for loco-manipulation tasks, such as door opening, where it is crucial to accurately perceive
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the door’s dimensions and the manipulator’s relation to it. Its compatibility with the
ROS system and Intel RealSense SDK, as well as its support for USB 3.1, makes it easily
integrable with the existing robot architecture. This camera will be mounted at the base
of the robot, complementing the SR305 mounted on the arm, and ensuring that visual
feedback is available for both manipulation and locomotion tasks.

3.2. Software Tools

The software tools used in this project are essential for integrating and executing the
robotic system’s control and vision tasks. The tools are divided into three key areas: ROS
for system integration and simulation, the base MPC repository used as foundation for
robot control, and CNNs for vision tasks.

3.2.1. Robot Operating System (ROS)

ROS is an open-source framework widely used for developing robotic applications
[88]. It was first introduced in 2007 by Eric Berger and Keenan Wyrobel at Stanford
University and has since become the de facto standard for robotic system implementation,
particularly in research and increasingly in industry due to its flexibility and wide array of
tools [89]. At its core, ROS operates on a system of nodes, each of which handles a specific
function within the robot. These nodes communicate through a publish-subscribe model
using topics for message passing, allowing data to flow asynchronously between different
parts of the system. Additionally, services enable synchronous communication, where
a node can send a request and wait for a response, which is crucial for tasks requiring
immediate feedback or control.

ROS is language-agnostic, meaning nodes can be implemented in various program-
ming languages, such as C++ or Python, allowing flexibility in development. In this
project, the nodes handling vision-related tasks have been implemented in Python,
while the rest of nodes, particularly those related to control and motion, are written
in C++. This division is justified by the strengths of each language: Python offers ease
of use and rapid development, making it ideal for processing image data and integrat-
ing machine learning models, while C++ provides performance and fine-grained control
necessary for real-time robotic control tasks.

The choice of ROS Noetic, even with ROS 2 available since 2017, is strategic. It
is the final release of ROS 1, providing extensive documentation, stable support, and a
broad user base. This version is also compatible with the existing MPC repository used
in the project and aligns with the tools and previous work done within the lab, ensuring
a smooth development process. Several key ROS tools are employed in this project.
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Gazebo is a powerful simulation tool within the ROS ecosystem that provides a highly
realistic environment for testing and validating robotic systems [90]. It enables developers
to simulate complex scenarios and supports physics-based simulations, allowing for
accurate modeling of sensor data, actuator dynamics, and environmental interactions.
Gazebo additionally offers the possibility to add plugins and even to create new ones.

RViz is a crucial visualization tool within the ROS framework that allows devel-
opers to interactively monitor and analyze the robot’s state and sensor data in real-time
[91]. It provides a flexible and powerful environment for visualizing various types of data,
including sensor outputs, robot model states, and trajectory plans, making it an indis-
pensable tool for debugging and development. Moreover, RViz provides tools to interact
with the robot’s control systems, such as setting target poses, sending commands, and
visualizing sensor outputs like point clouds and images. This interactive capability is cru-
cial for fine-tuning control algorithms and ensuring that the robot behaves as expected
under different scenarios, whether in simulation or real-world operation. Figure 3.6 shows
a screenshot of the RViz display during development.

Figure 3.6. RViz screenshot showing simulated camera color and depth images, handle
point cloud and centroid, and some additional markers.

Finally, rosbag is a powerful tool within the ROS ecosystem used for recording
and playing back ROS message data [92]. It allows developers to capture all messages
published over ROS topics during a robot’s operation and save them to a file, known as
a “bag” file. This capability is especially useful for debugging, testing, and analysis,
as it enables the recreation of specific scenarios of the analysis of sensor data without
needing to rerun the entire robotic system.
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3.2.2. Base NMPC Controller Repository

The decision to utilize a combined approach of NMPC with WBC for the integrated
control of both the arm and the quadruped systems—specifically the AlienGo Unitree
quadruped coupled with the Unitree Z1 manipulator—stems from the need for precise
and dynamic interaction within complex environments. NMPC provides optimal control
planning over a finite horizon of the whole assembly, considering future states to make
informed decisions, while WBC facilitates effective management of multiple tasks.

Given the complexity inherent in implementing this advanced controller, it was deemed
necessary to build upon existing code foundations. This approach allows for focusing
on the development of more advanced applications by leveraging proven frameworks that
facilitate stability and reliability. The project initially utilized a repository featuring a
NMPC-WBC controller specifically designed for the A1 Unitree quadruped without
any arm [93]. This repository used ROS Noetic and provided a solid foundation for
testing basic functioning and feasibility and is based on the work done at ETH Zurich [4,
56, 67, 94].

As the project evolved, there was a transition to a more advanced repository [95]. This
new repository built upon the initial one but included extension for the AlienGo platform
coupled with the Kinova Jaco v2 6-DOF arm equipped with three fingers. This
upgrade was critical for exploring manipulative tasks. The system framework architecture
can be seen in Figure 3.7. The repository is still under development but some of the tasks
it has achieved are whole-body planning, end-effector motion tracking, stability with
force disturbance, and whole-body compliance control [96]. In addition to this, one of the
repository branches was focused on real hardware implementation, setting a robust
base for the integration of the Z1 arm and the addition of vision and planner modules.
These enhancements are pivotal for executing more complex tasks such as door opening.

Figure 3.7. Base GitHub repository NMPC controller [93, 95, 96].

As shown in Figure 3.7, once the user sets the desired end-effector position, it is
converted to a state trajectory (base and end effector target poses) and then sent to the
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NMPC. The NMPC evaluates the optimized system state and input to the WBC. The
WBC then figures out the joint torques according to the optimized states and inputs from
the NMPC according to a hierarchy of tasks. The torque is set as a feed-forward term
and is sent to the robot’s motor controller. Low-gain joint-space position and velocity
Proportional Derivative (PD) commands are sent to the robot’s motors to reduce the shock
during foot contact and for better tracking performance. Both the NMPC and WBC need
to know the current robot state, the base orientation and joint state, all obtained directly
from the IMU and the motor measurements. Running in the same loop with WBC, a
linear Kalman filter estimates the base position and velocity from base orientation, base
acceleration, and joint foot position measurement [94].

3.2.2.1. Trajectory Publisher Implementation

The trajectories publisher acts as a state and input reference generator (xref and
uref ) which employs the end-effector position set by the user, the current state of the robot
and the gait schedule timing. The position of the end-effector can be directly modified
from an interactive marker in RViz. A total of 11 gait schedules are configured with
their respective switching times, including stance, trot, standing trot, flying trot, dynamic
walk, etc.; and it is possible to switch from one to another from the terminal console.

3.2.2.2. NMPC Implementation

The model used in this NMPC problem for the robot is a centroidal model, which
is particularly advantageous for legged robots. This model integrates both kinematic and
dynamic aspects but simplifies the dynamics to enhance computational efficiency. Specif-
ically, it treats the robot as a poly-articulated floating-base system with an unactuated
3D rigid body core and fully actuated limbs, as it can be seen in Figure 3.8.

Figure 3.8. Centroidal multi-limbed floating-base model with I, B, and G being the iner-
tial, base and centroidal frames respectively [4].
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The system dynamics within this framework can be modeled in two distinct ways, se-
lectable via a configuration file: Single Rigid Body Dynamics (SRBD), that simpli-
fies the dynamics assuming constant inertia regardless of the joint positions and massless
limbs, and Full Centroidal Dynamics (FCD), which fully integrates the motion of the
robot’s limbs into the centroidal dynamics calculations [65, 97]. The SRBD model works
well if the limbs have small mass compared to the total robot mass.

The robot has a total of 18 DOF, 12 corresponding to the quadruped and 6 of the
Kinova arm (which coincides with the DOF of the Z1 arm). This way, the optimal control
problem is formulated according to 2.3 with the system state x and input u defined as:

x = [hTcom, qTb , qTj ]T , u = [wT
e ,v

T
j ]T , (3.1)

where hcom ∈ R6 is the collection of the normalized centroidal momentum, qb ∈ R6 is the
base pose and qj ∈ R18 are the joint positions. we ∈ R18 are the contact wrenches acting
on the end-effectors (note that it is assumed that the foot contacts are only subjected to
3-DOF forces and the manipulator end-effector is subjected to a 6-DOF wrench since it
can also suffer a torque actuation) and vj ∈ R18 are the joint velocities.

Cost Function

The NMPC cost formulation is simple and just defined by the quadratic cost of
tracking the error of all states and the input:

L(x,u, t) = ∥x− xref∥2
Q + ∥u− uref∥2

R

Φ(x) = ∥xI − xrefI ∥2
Q,

(3.2)

where Q ∈ R30×30 is the standard weight matrix, and R ∈ R36×36 is the control weight
matrix; both positive definite matrices that act as important tuning parameters of
the NMPC planner.

Constraints

With respect to the constraints, four types of state-input equality constraints and four
types of inequality constraints are implemented. The state-input equality constraints are
the following:



vei = 0 | ei ∈ Sefoot Zero closed foot contact velocities

wei = 0 Zero open contact wrench

vzei − vswing(t) = 0 | ei ∈ Sefoot Swinging foot contact trajectory

pei − pdesired = 0 | ei ∈ Searm End-effector position constraint

(3.3a)

(3.3b)

(3.3c)

(3.3d)
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where vei is the linear velocity of contact point ei expressed in the inertial frame I,
and Sefoot is the set of foot end-effectors. Searm is the set of arm end-effectors, and pei
and pdesired are the current and desired end-effector positions, respectively. The equality
constraints have the following implications: the foot of a stance leg should not separate
or slip with respect to the ground (3.3a), wrenches wei at open contacts vanish (3.3b), all
swing legs should track a reference trajectory vswing(t) along the surface normal (3.3c),
and the end-effector position tracks the desired one [4]. The inequality constraints are
the following:



qminj ≤ qj ≤ qmaxj Joint positions operational limits

vminj ≤ vj ≤ vmaxj Joint velocities operational limits

d(x)− ϵ · 1np×1 ≥ 0np×1 Robot self-collisions avoidance

µsf
z
ei
−

√
fxei

2 + f yei
2 + δ2 ≥ 0 End-effector force inside friction cone

(3.4a)

(3.4b)

(3.4c)

(3.4d)

where d(x) ∈ Rnp are the signed distances between np pairs of links that are represented
with primitive collision bodies, and ϵ ≥ 0 is the minimum allowable distance between
collision pairs [83]. µs is the static friction coefficient and δ ̸= 0 is needed to smoothen
the friction constraints. The inequality constraints have the following implications: the
joint positions must not overpass their physical limits (3.4a), the same applies to the
joint velocities (3.4b), robot’s self-collisions are avoided with a certain margin ϵ (3.4c),
and finally, the forces acting on the feet lie in their respective friction cones, that is, the
maximum static friction is not overpassed (3.4d).

Optimal Control Problem Solving

To solve this optimal control problem, a direct multiple shooting method is formulated
to transcribe the optimal control problem to a non linear program problem, which is
solved using SQP. The QP subproblem is solved using the High-Performance Interior-
Point Method (HPIPM) [98]. The outputs of the NMPC planner are the optimized state
and control input, x∗ and u∗, which are passed to the WBC controller. The time horizon
of the NMPC planner is T = 1 s, and the loop computes feedforward trajectories at an
average update rate of 100 Hz.

3.2.2.3. WBC and State Estimator Implementation

The optimal reference plans for the base and limbs are tracked by a WBC controller
that tries to fulfill a set of prioritized tasks. These tasks are formulated as a hierarchical
QP that optimizes for the generalized accelerations and contact forces. The purpose of
the WBC is not to directly track the optimal ground reaction forces but to capture their
influence by tracking the reference motion they induce on the base to keep the robot
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balanced [4]. This is because the WBC adjusts the optimized forces from the NMPC
if they violate any high priority objectives. The only exception are the arm contact
forces since the WBC has no knowledge of the manipulated object’s dynamics. WBC
only considers the current moment, and each task corresponds to equality or inequality
constraints dependent on decision variables. The decision variables for the WBC are:

xwbc =
[
q̈T ,wT

e

]T
, (3.5)

where q̈ = [q̈b, q̈j]T ∈ R24 are the accelerations of the generalized coordinates. The
computation of these decision variables is made through a series of calculations from x∗

and u∗ [56]. Table 3.1 shows the WBC prioritized tasks list.

Priority Type Task

0

= Floating base equations of motion
≥ Torque limits
≥ Friction cone constraints
= No motion at the contact points

1 = Base motion tracking
= Swing feet trajectory tracking

2 = Arm joint motion tracking
= Contact force tracking

Table 3.1. WBC prioritized tasks list [93, 96].

The WBC solves the QP problem in the null space of the higher priority tasks’ linear
constraints and tries to minimize the slacking variables of inequality constraints. This
approach can consider the full nonlinear rigid body dynamics and ensure strict hierar-
chy results with good real-time performance [56]. The outputs from the WBC are the
optimized joint position, velocity and torque references for the low-level control module:
q∗
j , q̇∗

j , and τ ∗
j , respectively. The actuator torque commands, τa, are generated by the

low-level control module running at 2 kHz, according to Equation 3.6:

τa = τ ∗
j +Kp(q∗

j − qj) +Kd(q̇∗
j − q̇j), (3.6)

where Kp and Kd are matrices with control tuning parameters corresponding to the
proportional and differential gains of each of the 18 joints of the quadruped manipulator.

The state estimator consists of a Kalman filter which fuses the motor encoder
readings, the visual odometry from the AlienGo front camera, and the IMU measurements
to estimate the base pose and angular velocities, and the joint positions and velocities.
This state estimation is fed into both the whole body planner and the controller. The
WBC, along with the state estimator constitute the main control loop running at 500 Hz.
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3.2.2.4. External Libraries and Dependencies

The repository leverages powerful external libraries to solve optimal control problems,
handle complex dynamics and ensure efficient collision management and detection.

• Optimal Control for Switched Systems (OCS2): It is a robust C++ tool-
box that facilitates the solution of optimal control problems for systems with
switchable dynamics [65]. It incorporates advanced algorithms such as Sequential
Linear Quadratic (SLQ) for continuous-time domain and Iterative Linear Quadratic
Regulator (iLQR) for discrete-time domain constraints. OCS2 excels in managing
path constraints using Augmented Lagrangian or relaxed barrier methods, making it
highly suitable for robotic tasks that demand the integration of complex kinematic
and dynamic models from Unified Robot Description Format (URDF) files. Its ca-
pability to interface seamlessly with ROS enhances its utility in real-time robotic
applications, especially on platforms with limited computational power.

• Pinocchio: It is an open-source library [99] focused on providing fast and flexible
implementations of rigid body dynamics algorithms and their derivatives [100].
It is built on the Eigen library [101] for linear algebra and seamlessly integrates
with the Flexible Collision Library for efficient collision detection [102]. Pinocchio
is crucial for simulating articulated robotic systems, offering rapid kinematics and
dynamics computations.

• HPP-FCL: It is an extension for the Flexible Collision Library [102], offering en-
hanced collision detection capabilities tailored for robotics applications [103].
It features an efficient implementation of the GJK (Gilbert-Johnson-Keerthi) algo-
rithm [104], supports safety margins for collision detection, and incorporates accel-
erated collision techniques to improve performance.

3.2.3. Convolutional Neural Networks

CNNs are a specialized type of artificial neural network designed for processing and
analyzing visual data, making them particularly effective for image-related tasks. Un-
like traditional neural networks, CNNs leverage the spatial structure of images, taking
into account the relationships between pixels by applying convolutional operations, as
shown in Figure 3.9 [105]. These operations involve passing the image through filters (or
kernels) that detect patterns such as edges, textures, or even more complex features as
the network deepens. The input to a CNN is typically a tensor representing the image,
with dimensions corresponding to height, width, and the number of channels (e.g., three
channels for RGB images).
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Figure 3.9. Convolution operation explanation [105].

The CNN architecture consists of several key components. Initially, convolutional
layers apply filters to the input image, producing feature maps that highlight specific
patterns. These are followed by activation functions, commonly Rectified Linear Unit
(ReLU), which introduces non-linearity into the model [106]. To reduce the dimensionality
and computational load, pooling layers are employed. These layers typically perform
max-pooling, which retains only the most prominent features by selecting the maximum
value from a subset of the feature map. This process is repeated in multiple layers,
progressively extracting more abstract features as the image passes through the network.
Eventually, fully connected layers at the end of the network combine these features to
make a final prediction, such as classifying the image or detecting objects within it. A
diagram with the whole generic architecture is shown in Figure 3.10 [107].

Figure 3.10. CNN architecture [107].

3.2.3.1. YOLO

For this project, the YOLOv8 (You Only Look Once version 8) model is used, which
is a state-of-the-art CNN designed for real-time object detection, localization and
segmentation tasks [108]. It was chosen over other architectures due to its exceptional
accuracy and high-speed processing, in addition to its robust community and developer
support. YOLOv8 stands out for its ability to simultaneously predict bounding boxes,
class labels, and pixel-level segmentation masks. This makes it particularly suitable for
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applications that require not just detecting objects but also understanding their shapes
and boundaries within the image. For the task of door opening, segmentation is critical,
as it allows the robot to accurately identify and differentiate between the door, the handle,
and the surrounding environment, enabling precise manipulation.

YOLOv8, developed by Ultralytics [109], continues the legacy of the YOLO series,
which began in 2015. The model divides images into grids and predicts the presence of
objects within these grids [110]. These models are pre-trained on the Common Objects
in Context (COCO) dataset, which includes 330.000 images and 80 different object cat-
egories. This pre-trained weights can be taken as a starting point to fine-tune the
model with a custom dataset to obtain better results and faster implementation than if
it was trained from scratch. Several hyperparameters can be set for the training, such
as the number of epochs, which is the number of cycles the neural network trains over
the entire dataset. Different YOLO models are available for specific vision problems
such as segmentation (yolo8vs-seg), classification (yolo8vs-cls), detection (yolo8vs),
tracking (yolo8vs-obb) and pose estimation (yolo8vs-pose), shown in Figure 3.11.

Figure 3.11. Computer vision problems [109].

For each of these specific tasks, different model sizes (n, s, m, l, and x) are available
depending on their number of parameters. Normally, a higher number of parameters
implies greater accuracy but also higher computational load and lower speed. As an
example, Table 3.2 compares the five segmentation YOLOv8 model sizes [111]. The
concept of Mean Average Precision (mAP) is explained in Section 3.2.3.3.

Table 3.2. Characteristics of different YOLOv8 segmentation model sizes [111].

Model Size mAPbox mAPmask Speed CPU Speed A100 Params FLOPs
(pixels) 50-95 50-95 ONNX (ms) TensorRT (ms) (M) (B)

YOLOv8n-seg 640 36.7 30.5 96.1 1.21 3.4 12.6
YOLOv8s-seg 640 44.6 36.8 155.7 1.47 11.8 42.6
YOLOv8m-seg 640 49.9 40.8 317.0 2.18 27.3 110.2
YOLOv8l-seg 640 52.3 42.6 572.4 2.79 46.0 220.5
YOLOv8x-seg 640 53.4 43.4 712.1 4.02 71.8 344.1
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3.2.3.2. Work Pipeline

The implementation of YOLOv8 is powered by several libraries and tools. Ultralytics
provides the main framework for managing the YOLOv8 model, offering functionalities for
training, inference, and performance evaluation [109]. PyTorch serves as the deep learn-
ing backend, handling the computational aspects of the model training and optimization
processes [112]. Figure 3.12 shows the followed vision sub-system project pipeline.

Figure 3.12. Vision model work pipeline schematic.

To prepare the dataset, Roboflow was utilized to manage and augment the data
[113]. Roboflow offers an intuitive online platform for labeling images, performing data
augmentation, and exporting datasets in formats compatible with various machine learn-
ing frameworks. Techniques like rotation, scaling, and color adjustments were applied to
enhance the dataset’s diversity, improving the model’s ability to generalize to different
scenarios. However, the actual training of the YOLOv8 model was carried out locally
using the Ultralytics framework and Pytorch with a NVIDIA RTX 4060 GPU, ensuring
a tailored and optimized training process.

3.2.3.3. Performance Metrics for Vision Models

To quantify how well a model performs in detecting and classifying objects, it is
essential to understand the key metrics used to measure accuracy and reliability [110].
These metrics are derived from the count of true positives, TP , false positives, FP , and
false negatives, FN . Some of the most relevant are:

• Precision: Precision measures the accuracy of the model’s positive predictions. It
is defined as the ratio of true positive detections to the total number of positive
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predictions made by the model. In other words, it indicates the proportion of
correctly identified instances among all instances classified as positive:

p = TP

TP + FP
(3.7)

• Recall: Also known as sensitivity or true positive rate, recall measures the model’s
ability to identify all relevant instances within a dataset. It is calculated as the ratio
of true positive detections to the total number of actual positive instances. This
metric reflects the proportion of actual positives that were correctly identified:

r = TP

TP + FN
(3.8)

• mAP: The mean average precision is a comprehensive metric that combines both
precision and recall across different confidence thresholds. It evaluates the model’s
performance by integrating the precision-recall curve over varying level of detec-
tion confidence. The average precision (AP) is first calculated for each confidence
threshold, and then these values are averaged:

APn =
∫ 1

0
pn(r) dr

mAP = 1
N

N∑
n=0

APn

(3.9a)

(3.9b)

Where pn(r) represents the precision as a function of recall, r, at a specific confidence
level, indexed by n. Typically, n varies from zero to one in increments of 0.1,
resulting in N = 11 different confidence levels.

3.2.3.4. Additional Packages and Libraries

In addition to the primary tools, several other packages and libraries were utilized to
enhance the functionality and efficiency of the vision algorithms and overall system.

• OpenCV: It is an open-source library originally developed by Intel for real-time
computer vision applications. It supports multiple programming languages like
C++ and Python and is platform-independent, making it versatile for various
projects. OpenCV provides optimized algorithms for tasks such as image process-
ing, feature detection, and video analysis. In this project, it is used primarily for
processing images generated by the YOLOv8 model [114].

• NumPy: It is a core library for numerical computing in Python, offering support
for large arrays and matrices, along with numerous mathematical functions. It is
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essential for data manipulation and integration with other libraries like OpenCV. In
this project, NumPy is used for handling and transforming image data during the
preprocessing and post-processing stages [115].

• Point Cloud Library (PCL): It is an open-source library specialized in processing
3D point clouds, offering tools for filtering, segmentation, and surface reconstruction.
Though its use in this project is limited, PCL is key for managing depth data and
enhancing 3D perception capabilities in the robot’s tasks [116].

• Scikit-learn: It is a machine learning library for Python, providing tools for data
mining, classification, and dimensionality reduction. In this project, it is used for
tasks like Principal Component Analysis (PCA) and RANSAC, which help refine
the vision algorithms’ outputs by reducing data dimensionality and ensuring robust
model fitting [117].

3.2.4. Camera Calibration and 3D Data Analysis

This section details the algorithms and techniques employed for 3D vision data analy-
sis, critical to the project’s vision component. It first explains the key camera parameters
obtained from the calibration process that are essential for accurate 3D point cloud re-
construction. Following this, RANSAC and PCA algorithms are covered, since they are
pivotal in the vision algorithms developed in this work.

3.2.4.1. Camera Calibration and Parameters

Camera calibration is a foundational aspect of computer vision and robotics, involving
the estimation of both intrinsic and extrinsic parameters that define the optical charac-
teristics and positioning of a camera system. This process is essential for achieving high
accuracy in applications that rely on visual data for navigation, 3D reconstruction, and
interaction with the environment.

The intrinsic parameters of a camera describe its internal optical characteristics.
In the case of the employed depth cameras, they come pre-calibrated directly from the
manufacturer with factory-set intrinsic parameters tuned for general use out of the box.
These parameters are encapsulated in the camera intrinsic matrix, often denoted as K.
The matrix includes the focal lengths, the principal point, and the skew coefficient, which
characterizes the angle between the x and y pixel axes. The general form of the intrinsic
matrix K is given by:

K =


fx s cx

0 fy cy

0 0 1

 , (3.10)
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where fx and fy are the focal lengths expressed in pixel units along the x and y axes,
respectively; cx and cy are the coordinates of the principal point (which is ideally the
image center); and s is the skew coefficient, typically zero in modern cameras where the
pixel axes are perpendicular. These parameters are critical because they allow for the
conversion from 2D image coordinates to 3D world coordinates; which is pivotal for tasks
such as point cloud generation, where depth information must be accurately mapped to
spatial dimensions. Figure 3.13 illustrates these intrinsic parameters [87].

Figure 3.13. Camera intrinsic parameters [87].

With respect to the extrinsic parameters, they consist on a rotation matrix and a
translation vector that describe the position and orientation of the camera in a world
coordinate system.

3.2.4.2. Point Cloud Construction

A point cloud is a set of data points in space where each point represents a location.
The point collectively commonly represent the external surfaces of visible objects in the
environment. Generating point clouds from depth images involves mapping each pixel
in the depth image into a coordinate in the 3D space based on its depth value and the
camera’s intrinsic parameters. Knowing the depth, z, for each pixel value, the pixel
coordinates (u, v) can be converted into camera-centric coordinates using the following
equations:


x = (u− cx) ·

z

fx

y = (v − cy) ·
z

fy

(3.11a)

(3.11b)

3.2.4.3. RANSAC Algorithm

RANSAC is a robust statistical method used to estimate the parameters of a mathe-
matical model from a dataset that contains outliers, as it can be seen in Figure 3.14a. This
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algorithm is particularly effective in the fields of computer vision and image processing
where the data may be corrupted with noise or contain points that do not fit the desired
model. Its pseudocode is presented in Algorithm 1.

Algorithm 1 RANSAC Algorithm
Require: Pointcloud P , Number of iterations N , Distance threshold T
Ensure: Best model amongst all iterations M̂

1: bestInliers ← 0
2: M̂ ← null
3: for i← 1 to N do
4: subset ← randomSubset(P)
5: model ← fitModel(subset)
6: inliers ← []
7: for each point in P do
8: if distance(point, model) < T then
9: inliers.append(point)

10: if size(inliers) > bestInliers then
11: bestInliers ← size(inliers)
12: M̂ ← reEstimateModel(inliers)
13: return M̂

It iteratively selects random subsets of data to fit a model, typically requiring just
enough points to define the model, such as two points for a line. During each iteration,
RANSAC identifies inliers—points that fit the model within a predefined tolerance. If a
model has more inliers than any previously found model, it is considered a better fit and
becomes the new best model. After a set number of iterations, the algorithm selects the
model with the highest number of inliers as the most robust estimate.

(a) (b)

Figure 3.14. Data analysis algorithms: (a) 3D plane RANSAC fit [118], (b) PCA applied
to a 3D dataset [119].
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3.2.4.4. PCA Algorithm

PCA is a statistical procedure that transforms a set of possibly correlated variables
into a set of linearly uncorrelated variables known as principal components. It helps in
detecting patterns in data based on the correlation between features, facilitating efficient
data compression and interpretative insights. Its pseudocode is presented in Algorithm 2.

Algorithm 2 Principal Component Analysis (PCA)
Require: Data matrix X with dimensions m× n (m samples, n features)
Ensure: Principal components matrix Y and the variances explained by each component Λk
1: Standardize columns of X to have zero mean and unit variance
2: Compute covariance matrix Σ = 1

m−1X
TX

3: Perform eigenvalue decomposition Σ = QΛQT
4: Sort eigenvalues Λ and corresponding eigenvectors Q in descending order
5: Select k largest eigenvalues Λk and corresponding eigenvectors Qk
6: Create projection matrix W from the selected eigenvectors Qk
7: Transform the original data matrix X to obtain the principal components matrix Y = XW
8: return Principal components matrix Y and the variances explained by each component Λk

The algorithm starts by standardizing the data to have a mean of zero and standard
deviation of one. PCA then computes the covariance matrix of the data, followed by its
eigenvectors and eigenvalues. These eigenvectors, which define new axes, and eigenvalues,
which measure the variance captured by each axis, are used to orient the data. The prin-
cipal components are ordered so that the first few retain most of the variation present in
the original dataset. By projecting the original data onto these few principal components,
PCA achieves dimensionality reduction while preserving as much variability as possible.
An example of PCA application to a 3D dataset in shown in Figure 3.14b.
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Chapter 4

Development

This chapter presents the comprehensive development process undertaken in this
project, covering the core components that underpin the research objectives. It begins
with an exploration of the designed system architecture, followed by detailed sections on
simulation modeling, the implementation of the NMPC controller from the base repos-
itory in both simulated and real-world settings, and the development of sophisticated
vision algorithms for door and handle detection. Additionally, the chapter discusses the
planning algorithms employed and concludes with insights into the system integration
process.

4.1. System Architecture

The system architecture was designed to make the quadruped manipulator robotic
system be able of performing obstacle traversal and door opening taking advantage of
the base NMPC controller repository. The system’s high level architecture can be seen
in Figure 4.1, where three modules are shown: the vision module, the planner module,
and the control module.

The vision module, qm_vision, is not used in this work for the obstacle traversal
tasks, for which the robot relies only on the controller’s state estimation without vi-
sual feedback (excluding the visual odometry). In this case, the vision module has been
designed to generate visual references for performing the door opening tasks. These
references enable the robot to position and orient itself to optimally open the door and
increase the success rate. Additionally, it provides the robot with 3D information of the
handle location to perform the loco-manipulation task. Future work could include incor-
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Figure 4.1. System architecture.

porating visual information extracted from the vision module into the NMPC controller
as it was done in [67], possibly improving significantly the performance in very complex
and difficult SAR scenarios. This module was developed in Python following Object-
Oriented Programming (OOP) practices thanks to the fast iterative development
possibilities this programming language offers, specially in computer vision. Additionally,
it was developed as a ROS package, enabling easy integration with the rest of the modules.

With respect to the planner module, qm_planner, it was also developed from scratch
as a ROS package but in this case it was written in C++ for improved performance.
This module is basically a substitution of the user input interface the original repository
provided to enable the robotic system to perform tasks more autonomously, without
constant user input. This is done by getting position references from the vision module
and the current state from the Kalman filter state estimator from the GitHub repository.
With this information the planner is able to determine at which state of the performed task
(e.g., door opening) the system is, and generate appropriate gait schedule and end-effector
position commands to feed the NMPC controller. These instructions were originally
manually sent through the terminal and the RViz interactive marker.

It is primarily used for the door opening task, though it was also employed for higher re-
peatability along multiple experiment iterations in simulated unstructured environments.
Future work would include integrating it within the planning and navigation frameworks
of previous work conducted by the lab for SAR scenarios were doors were significant
impediments [1].

Finally, the control module is implemented in C++ in several ROS packages. The
packages’ structure from the original repository was not modified and it groups different
types of files according to their functionality in the control program such as the descrip-
tion files (qm_description), the state estimation (qm_estimation), the gazebo simula-
tion (qm_gazebo), the formulation and resolution of the NMPC optimization problem
(qm_interface) or the WBC controller (qm_wbc). The main control loop that manages
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the whole control architecture and the user interface is programmed in qm_controllers.
Two additional packages are used for common code used across different packages, and
for including a wrapper1 for defining the QP problems: qm_common and qpoases_catkin,
respectively. Though the base repository presented a good foundation for developing the
controller, it has several limitations that have been addressed in this work. The controller
was adapted for the Unitree Aliengo and Z1 robots in specific and the original capabilities
of the quadruped manipulator were augmented as described in Section 4.3. The detailed
integration of the whole architecture is presented in the last section of this chapter.

4.2. Simulation Modeling

To develop this software, it was chosen to use Gazebo simulation platform to mimic
the physical environment where the robot would be performing. The simulation modeling
process is a crucial step in testing and validating the robotic system’s functionality before
real-world implementation. Gazebo was chosen over other alternatives such as Unity due
to the fact it had already been implemented in the original repository, and because it is
within the ROS ecosystem, which eases the development process.

To facilitate simulations within Gazebo, it is essential to first construct the URDF
files. These files provide a detailed description of the robot’s physical attributes, such
as its geometry, kinematics, dynamics, and visual elements. Once the URDF files are
prepared, additional configuration files and simulation environments are set up to create
a comprehensive model that interacts within Gazebo.

4.2.1. Robot modeling

The first step was to modify the robot URDF description files from the repository
since these were the ones corresponding to the AlienGo with the Kinova Jaco v2 arm.
The URDF files are created from .xacro files that enable to create shorter and more
readable XML files than the whole URDF. For example, in the case of the AlienGo, there
is one file with the model mass and inertia parameters, and others for the materials, leg
sub-assembly, transmissions, IMU and Gazebo configuration. This enables to create a
unique URDF description file of the quadruped manipulator from the description files of
the quadruped and the manipulator. It is also in these files where the collision bodies
geometries are defined. Figure 4.2 shows the model of the quadruped and its simplified
collision bodies model.

1 Layer of code that facilitates interaction with a software library, simplifying its use or adapting it for
compatibility with different programming environments.
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(a) (b)

Figure 4.2. AlienGo quadruped URDF model: (a) Geometric model, (b) Collisions model.

In order to implement the manipulator, the geometry mesh files corresponding to each
link of the Z1 robot were retrieved from the official unitree_ros GitHub repository from
Unitree Robotics [120]. The Z1 arm geometric and collision bodies models are shown in
Figure 4.3. An additional invisible spherical link in the grasping position was created as
required by the NMPC controller.

(a) (b)

Figure 4.3. Z1 manipulator URDF model: (a) Geometric model, (b) Collisions model.

Finally, to setup the robot model it is necessary to add the Intel RealSense SR305. In
order to do this, a support was designed in Autodesk Inventor to fix the camera
to the Z1 arm. It was decided to add it in the last arm joint to have a close look when
manipulating the door handle. It is composed of three pieces, a lower half-ring, an upper
half-ring, and the camera fixation support. The lower half-ring is fixed to the upper-ring
through two bolts and the design enables to modify both the height and the orientation
angle of the camera through a third bolt that links the upper ring and the camera fixation
support, as shown in Figure 4.4. In addition to this, a protection cover was designed for
the camera.

These designed components were added to the URDF of the quadruped manipulator
as links of the Z1 manipulator. To finish with the robot URDF configuration, the camera
models were created. Two depth camera Gazebo sensors were included in the URDF by
configuring the camera parameters to be the ones of Intel’s datasheets [87][121], such as
the horizontal field of view, the resolution, and the minimum and maximum range.
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(a) (b)

Figure 4.4. Camera support model: (a) Support model, (b) Protection cover model.

By using the Gazebo plugin librealsense_gazebo_plugin.so, the SR305 and D435
cameras were simulated to publish the ROS messages in the topics the real devices would
be using. In particular, the cameras were set to publish the color image, the depth image,
the color and depth camera information messages containing camera metadata essential
for various vision related tasks, and the 3D point cloud of the whole image (published
by the real camera thanks to a program in the Intel RealSense SDK [122]). Two virtual
links, camera link and camera optical link, are created for the Gazebo camera plugin to
work properly. Once this is done, the final robot URDF is generated from the associated
.xacro files. Figure 4.5 shows the robot link tree-like architecture and Figure 4.6 shows
the nomenclature used for each joint of the quadruped manipulator model.

Figure 4.5. Robot link tree-like architecture (ROS TF tree).
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Figure 4.6. Robot assembly and joint configuration.

4.2.2. Environments Modeling

This section focuses on the modeling of the environments utilized in the simulation of
robotic tasks, specifically addressing the challenges posed by unstructured SAR scenarios
and door opening operations. For each environment, detailed models were constructed to
replicate real-world conditions as closely as possible to evaluate the system performance
in simulation.

4.2.2.1. Unstructured SAR Environments

To effectively test the features and robustness of the robotic controller under various
challenging conditions, five distinct types of unstructured environments that could be
found in SAR missions have been developed:

1. Variable height pallets: This environment consists of a series of pallets with
varying heights, including one of 20 cm height that exceeds the maximum height
of 18 cm specified by the robot’s manufacturer for its standard controller [46]. The
characteristics of the pallets and their distribution can be seen in Figure 4.7.

2. Tunnel and irregular terrain: This model features a tunnel of 60 cm height
with irregular terrain and restricted height, testing the robot’s ability to operate in
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Figure 4.7. Variable height pallets environment.

confined spaces with non-uniform ground conditions. Figure 4.8 shows the designed
environment. This irregular terrain was built using the surface modeling tool from
Autodesk Inventor.

Figure 4.8. Tunnel and irregular terrain environment.

3. Unstable platform: An environment featuring an unstable platform supported
by two 10 cm spheres can be seen in Figure 4.9a. This scenario assesses the robot’s
balance control and adaptability to maintain functionality on dynamic, uneven sur-
faces. The absence of this type of reactive control behavior is one of the main
disadvantages of simpler control methods like CPG installed by default in Unitree
quadrupeds.

4. Stair Navigation: It comprises an obstacle course that includes ascending stairs, a
ramp, and descending stairs as it can be seen in Figure 4.9b. Figure 4.9c shows the
dimensions of the designed environment. This environment evaluates the robot’s
mobility and stability control across different inclinations and step configurations.

5. Maze navigation: Four types of mazes were designed modularly as part of a differ-
ent Master’s Thesis tackling the control problem with RL. Each block constituting
the maze is 0.75×0.75 m. The labyrinths were built physically but the NMPC could
not be tested in this environment for time constraints.

Each environment is designed to progressively be able to test the capabilities of the
robot controller, trying to mimic unpredictability typical of SAR operations, but certainly
limited in comparison with the Red Zone classification according to the NIST. These
environments would correspond to an orange zone according to this classification.
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(a) (b)

(c)

Figure 4.9. Modeled environments: (a) Unstable platform, (b) Stairs and ramp, (c) Stairs
environment dimensions.

Figure 4.10. Maze environment configurations.

4.2.2.2. Door Opening Environments

In order to create the door opening simulation environment, a URDF model was
created based on [123]. The model is constituted by three parts: the door frame, the
door, and the handle; and has 2 DOF since both the door and the handle can rotate.
Figure 4.11 shows the model and a detail view of the handle mechanism. The door has
initially been configured to be a non-spring door. The handle joint can be modeled as an
elastic joint in Gazebo by defining the spring stiffness and damping parameters, though
initially these parameters were left to zero to start with the most simple behavior.

Two door opening environments have been created locating the door in different po-
sitions for push and pull opening simulations. These environments are launched from
Gazebo launch files which enable to launch several object spawning nodes all at once
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(a) (b)

Figure 4.11. Door model: (a) Overview, (b) Door handle detail.

(e.g., quadruped manipulator, door, walls, etc.). The door is interpreted as a 2-DOF
non-actuated robot continuously publishing its states in order to be able to visualize it in
RViz. Two extra static walls were added to both sides of the door.

4.3. NMPC Controller

The NMPC controller implemented in this project was initially based on a GitHub
repository that provides a good foundation work for quadruped manipulators application
[95]. While the repository offered a solid starting point, several limitations were iden-
tified that necessitated significant modifications to adapt the controller to the specific
application designed in this work and improve its performance.

4.3.1. Limitations of the Base Repository

The base repository provides a NMPC framework of the AlienGo robot with the Kinova
Jaco v2 arm. It includes basic functionalities for gait generation, state estimation, and
solving the optimization problem. The repository includes specific branches for ensuring
whole-body compliance under actuation saturation, considering force disturbance
on the manipulator’s end-effector and real robot hardware implementation. These last
two branches were of specific interest for the door opening application and real-world
deployment. The repository additionally offers the possibility to control the quadruped
manipulator both as a combined system and as a separate system. However, there
were several identified limitations:

• Kinova Jaco arm support: The base repository was originally designed to sup-
port the Kinova Jaco manipulator arm. However, this project required the integra-
tion of the Unitree Z1 arm, which has different kinematic and dynamic character-
istics. This limitation meant that the original description and control parameters
files were not directly applicable.

NMPC CONTROLLER 57



TRABAJO FINAL DE MÁSTER - DANIEL SOTELO AGUIRRE
DEVELOPMENT AND INTEGRATION OF A NMPC-CONTROLLED LEGGED-MANIPULATOR PLATFORM FOR SEARCH
AND RESCUE OPERATIONS

• Inability to handle vertical obstacles, stairs or ramps: The original reposi-
tory was not configured to handle vertical references effectively, making the robot
incapable of climbing stairs or overcoming significant obstacles. This was because
the base height restriction was imposed with respect to the world frame and when
the robot faced a vertical obstacle it tried to compensate it by lowering the body
till the point of crashing with the ground.

• Complex initial position configuration: To change the initial position of the
robot in the simulation, six different files needed to be modified manually with sev-
eral correlated parameters. This cumbersome process introduced potential for errors
and made it difficult to perform rapid testing and iterations during development.

• Manual gait pattern and end-effector setting: The gait pattern for the robot,
crucial for adapting to different terrains and tasks, must be manually set by the
user via the terminal. This lack of automation requires constant user intervention,
which can be inefficient. The same happens with the end-effector position, critical
for tasks involving manipulation, which must be manually set through RViz by the
user. This manual adjustment limits the system’s autonomy and makes it difficult
to perform tasks that require dynamic or real-time end-effector adjustments.

• Gripper controller limitations: The finger gripper controller included in the
repository could not be operated simultaneously with the NMPC controller unless
the system was in separated systems mode. The restriction hindered the robot’s
ability to perform continuous manipulation tasks while maintaining locomotion,
which is essential for seamless operation in dynamic environments.

4.3.2. Modifications and Enhancements

To address these limitations, several modification and enhancements were implemented
to improve the controller towards SAR and door opening applications:

• Integration of the Z1 manipulator: The NMPC controller was modified to
support the Unitree Z1 arm, replacing the original Kinova Jaco configuration. This
involved updating the robot’s URDF files to reflect the Z1’s geometry, kinematics,
and dynamics, and modifying the NMPC to control the new arm joints effectively.
Small modifications were made in several files to account for the new joint naming,
and Proportional-Integral-Derivative (PID) controllers. Some NMPC controller’s
parameters were modified to improve the system performance in certain tasks as it
will be later described.
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• Base height estimation redefinition: To enable the robot to handle vertical
obstacles, stairs and ramps, the NMPC controller was modified to calculate the
base height relative to the position of the feet in contact with the ground instead of
the world frame. This was done by using Pinnochio’s library [100] to determine the
position of the feet end effectors. With their position and the boolean determined
by each foot’s force contact sensor, it was possible to calculate the average height
of the feet in contact with the ground.

• Simplified initial position configuration: The process of setting the robot’s
initial position was streamlined by consolidating the configuration parameters into
a single file in the qm_controllers package. This change reduced the risk of errors
and made it easier to configure and deploy the robot in different scenarios.

• Automated gait pattern selection and end-effector positioning: A sub-
scriber to the gait pattern topic was implemented in the NMPC controller to avoid
the need for defining the gait schedule from the terminal. Something similar was
done with the end-effector positioning, making it possible to define its position and
orientation directly through a ROS topic without the need to touch the interactive
RViz marker, though this can still be done.

• Enhanced gripper control integration: Some progress was done towards in-
tegrating the gripper controller seamlessly with the NMPC controller, allowing for
simultaneous operation in combined systems. However, resource conflicts were found
in the ROS controller manager and this improvement is still under development. In
the meantime to enable door opening testing, a custom piece was designed to
be attached to the closed gripper to enable safe manipulation.

With respect to the NMPC controller parameters, the ones used for the Kinova arm
showed to work relatively well for the Z1 arm, so they were not initially modified to
focus on the application development. However, after the implementation of the force
compliance feature, which is described in the next section, parameter tuning was required
since high instability occurred in some of the manipulator joints. The tuning process for
these parameters is described in Section 4.3.4.

The SRBD dynamics model was chosen due to is lower computational cost com-
pared to the FCD model, and reasonably good performance. Other model parameters
which were modified for the different simulation tests were the surface static friction co-
efficient, the base height reference, linear and angular target velocities or the leg swing
height, which can be set in task.info and reference.info configuration files from the
qm_controllers package.
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4.3.3. Force Compliance for Door Opening

The initially used controller—used in the unstructured environment locomotion tests—
did not include a force compliance constraint in the NMPC problem. This limi-
tation led to instability when interacting with external objects, such as doors, because
the controller was unable to regulate the applied forces to maintain a stable interaction.
Specifically, when the robot’s end-effector came into contact with the door, it could not
adjust the applied force to ensure a smooth and compliant motion. This resulted in
crashes or failure to maintain the desired trajectory.

To address this issue, force compliance was incorporated into the NMPC optimization
problem by adding a dedicated constraint for the end-effector force. This constraint
ensures that the force applied by the end-effector is controlled according to the desired
values from the controller. The equality constraint is defined as:

−fee(t) + uinput = 0 (4.1)

Where fee(t) represents the force exerted by the end-effector, and uinput corresponds to the
force commands generated by the NMPC system. By integrating this force constraint into
the optimization process, the controller ensures that the robot can respond to external
disturbances, such as interacting with a door, by adjusting the forces applied to maintain
stability and complete the task effectively.

Additionally, a low-priority task for force tracking was incorporated into the WBC
controller, as shown in Table 3.1. This allowed the system to monitor and track the forces
applied to the end-effector, ensuring the robot could react compliantly during contact,
like when pushing or pulling a door.

4.3.4. Model Parameter Tuning

After the bad performance of the quadruped manipulator when the force constraint
was implemented, it was decided to tune the control parameters. These included
the weight matrices for the NMPC and the PD gains for the WBC. This tuning aimed
to ensure that the system could handle tasks like door opening, force compliance, and
general locomotion with precision, stability, and energy efficiency.

4.3.4.1. NMPC: Q and R Matrices

Q matrix penalizes deviations from the desired state, while R matrix penalizes the
magnitude of control inputs. These matrices were tuned to strike a balance between
performance and control effort:
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• Q matrix: Higher values were assigned to state variables that required greater
accuracy, such as the position of the base and end-effector. This ensured that the
system prioritized these states. For instance, the weights for the leg joint positions
were kept relatively low since slight deviations in joint angles were acceptable. On
the contrary a high weight was given to the base height parameter. The values
defining the Q matrix can be seen in Table B.1 in Appendix B.

• R matrix: The R matrix was designed to limit the control effort, ensuring that
the system used energy efficiently without overloading the actuators. For instance,
the feet contact forces were weighted much less that the arm joint velocities. This
balance ensured smooth control while preventing aggressive inputs that could desta-
bilize the system. The values defining the R matrix can be seen in Table B.2 in
Appendix B.

4.3.4.2. WBC: Kp and Kd parameters

The proportional and derivative gains in the WBC determine the responsiveness and
stability of the system. They are detailed in Table B.3 in Appendix B.

• Kp and Kd for base control: The values for linear and angular base control were
set to 400 and 140, respectively. These gains ensured that the robot could stabilize
its base while maintaining smooth movements, especially during complex maneuvers
like door opening. Higher Kp values lead to quicker corrections, while the moderate
Kd values dampened oscillations, preventing overshooting.

• Kp and Kd for swing leg control: The gains for the swing legs were set to 350
and 37, respectively. These values were tuned to ensure the legs could follow the
desired trajectories accurately during locomotion while maintaining stability.

• Kp and Kd for arm joints: The arm joint parameters were higher, with propor-
tional gain values between 4000 and 6000 and derivative values around 75. This
reflected the need for high precision and force in manipulation tasks like door han-
dling, while the lower Kd values allowed for smoother movements without excessive
force.

The tuning process was iterative, with initial values based on theoretical concepts,
followed by empirical adjustments through simulation. Probably real-world testing would
lead to a different set of controller parameters since the model does not fully coincide with
the real robot. Additionally, due to the iterative nature of the process and the significant
amount of time required for adjusting all the parameters properly, further optimization
is highly recommended for enhancing performance.
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4.4. Vision Algorithms

The ability of the quadruped manipulator to interact effectively with its environment
hinges significantly on robust vision systems. This section delves into the specialized
vision algorithms to be able to recognize and manipulate doors, based on four ROS nodes.
Note however that these algorithms are limited in the current stage of development
to controlled settings and there is still a lot of work to do to implement them in an
active navigation algorithm for the robot to be able to interact autonomously with doors
in SAR tasks.

To give a general perspective of the vision subsystem development, first of all, two
YOLOv8 models, one for door detection and another one for handle classification and
segmentation, were trained. The first node uses the door detection model to detect the
door and calculates its center with respect to the camera to estimate references depending
on the orientation and position of the quadruped with respect to the door. This node
additionally uses the D435 camera to estimate the normal distance and vector to the door
wall plane.

The handle model is used in a handle classification and segmentation node that identi-
fies and isolates the door handle from visual data. Following this, in the same node depth
data is used to generate a point cloud of the segmented handle. A third node subscribes to
this point cloud topic and calculates the optimal grasping point and orientation. Finally,
one last node estimates the door radius from the information published from the rest,
which is one of the main manipulation-relevant door parameters.

4.4.1. Dataset Preparation and Model Training

At the outset of this project, it was decided to train two distinct YOLO models to
cater to the specific requirements of the robotic door interaction system. By splitting
the tasks between two models, each can be individually optimized for its specific purpose
without overburdening the system with unnecessary information processing. The datasets
for both models were prepared in Roboflow and both models were GPU-trained locally
as it was shown in Figure 3.12.

• Door Object Detection Model: The primary function of this model is to serve
as a visual feedback mechanism for planning the robot’s approach towards a door.

• Door Handle Segmentation Model: Once the robot has positioned in a proper
starting location, the next step involves the precise interaction with the door handle
to open it. This task requires a higher level of detail to accurately segment and iden-
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tify the specific features of different handles, including their shapes, positions, and
orientations. A dedicated model for handle segmentation allows for a more focused
and detailed analysis, which is necessary for precise grasping and manipulation.

4.4.1.1. Door Object Detection Model

The door object detection dataset [124] consists of 1561 uniform resolution 640×640
resolution pixel images, which is optimal for processing while maintaining enough detail
for accurate feature recognition. The images were box-annotated to identify the door
class. To ensure the effectiveness of the model and mitigate issues like model overfitting
and bias, the dataset was divided into three subsets: 80% for the training set, and
10% each for validation and testing. This dataset includes several images which have
been data-augmented through modifying its lighting conditions or vertical flipping, which
further enhances the model robustness.

Among the different available YOLOv8 detection model sizes, yolov8n, the nano
model, was chosen. This decision was taken because it is considered to be the fastest
alternative, which is critical for real-time applications. The smaller size of yolov8n,
compared to its larger counterparts like yolov8s or yolov8m, offers faster processing times,
making it suitable for deployment on hardware with limited computational resources
without a substantial sacrifice in detection performance for the application. The training
model was conducted over 100 epochs.

The evolution of the performance metrics during training can be seen in Figure 4.12.
Some examples of the model validation results are shown in Figure 4.13.

Figure 4.12. Door detection model performance metrics.

Though originally the dataset included only real door pictures, it was decided to add
the frames of a video recorded in simulation from the D435 camera (around 15%
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of the whole dataset divided in training, validation and testing). This was because the
initially trained model showed to excel at detecting real doors but missed the simulated
ones, which impeded code development in simulation. After this change, the model showed
to perform well both in real and simulation environments.

Figure 4.13. Door detection model validation results.

From the performance parameters it can be concluded the model performs excep-
tionally well on both precision and recall, implying it can detect the doors with high
accuracy. The mAP values are strong, and the similar magnitude of training and valida-
tion losses suggests that the model is not overfitting, which is corroborated by the high
precision and recall values.

4.4.1.2. Door Handle Segmentation Model

The door handle segmentation dataset [125] consists of 2153 uniform resolution 640×640
resolution pixel images. The images were annotated to identify and segment two dis-
tinct classes: handles and knobs. The purpose of including these two classes is to
trigger different manipulation strategies depending on the recognized class in future work
(out of the scope of this project since only handles were treated). In a similar way to the
previous case, the dataset is divided into three subsets: 80% for the training set, and
10% each for validation and testing.

To further enhance model robustness and ensure effective generalization across vari-
ous lighting conditions, angles, and object variations, a portion of the 2153 images in the
dataset has been generated using data augmentation techniques. This included hori-
zontal and vertical flipping, rotations and shearing. In this case, since the segmentation
task is slower than detection, it was decided to also use the nano model, yolo8vn-seg,
specially due to the speed needed for this application.

The training model was conducted similarly over 100 epochs. The evolution of the
performance metrics during training can be seen in Figure 4.14. The normalized confusion
matrix of the model after a 100 epochs, together with some model validation examples
are shown in Figure 4.15.
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Figure 4.14. Handle segmentation model performance metrics.

From the performance metrics, high precision is observed, indicating that when a
class is predicted, it is likely correct. The recall is also relatively high, indicating that
the model is good at identifying all the relevant samples within the classes. With respect
to the mAP, it suggests robustness in detecting and segmenting the objects across varied
overlap thresholds. Finally, with respect to the normalized confusion matrix shown in
Figure 4.15a, it is observed the model performs well enough for both door knobs and
handles. Though this model could be further improved, in the validation results it is
observed in Figure 4.15b to work quite well. Additionally, it has been tested in simulation
and real environments and it performs relatively well for the required applications, so it
was decided to use these model’s weights.

(a) (b)

Figure 4.15. Handle segmentation model: (a) Confusion matrix, (b) Validation results.

4.4.2. Door Detection and Reference Generation

The first ROS node, door_center is in charge of identifying and localizing the door
center vertical line using the D435 camera RGB image. The primary purpose of this node
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is to assist the robot in accurately identifying the position and orientation of a door within
its environment to be able to reposition for optimal opening. The model currently only
detects doors but it could be trained in the future to additionally detect hinges to know
if the door is of pull or push type.

This node additionally handles the depth information from the camera to calculate
the reference variations in the yaw angle, ψ, and x and y coordinates relative to the door,
as it can be seen in Figure 4.16.

Figure 4.16. Door reorientation reference generation.

The calculation is programmed to be a ROS service so these operations are only
performed when requested by a client. The operation consists of calculating the depth
value corresponding to the pixel in the center of the detected door box, ddoor; and the
estimation of the normal distance to the door wall plane, d⊥. p is the pixel distance
(positive or negative) between the image center and the detected door center. The yaw
variation is calculated from the scalar product of the camera direction vector, ĉ, and the
estimation of the vector normal to the door wall plane, n̂. The camera direction vector is
constant in the camera frame where the calculations are made, with value ĉ = [0, 0, 1]T .
The x reference command can be directly calculated from ddoor by knowing the safety
distance it is desired to maintain with the door in the normal direction before trying to
open it, d⊥0 . Knowing this, these equations enable to calculate the reference values.


ψ = sign(n̂x) · [π − arccos (ĉ · n̂)] , ψ ∈ (−90◦, 90◦)

∆xref = d⊥ − d⊥0

∆yref = sign(p · (ψ − α)) ·
√
d2

door − d2
⊥

(4.2a)

(4.2b)

(4.2c)

Once the door center is calculated from the corners of the detection box as shown
in Figure 4.17a, its depth is calculated from the depth reading associated to the RGB
pixel where the vertical line crosses the horizontal axis. In order to do this, the pixel
coordinates from the RGB camera are transformed into the corresponding depth camera
coordinates using both cameras’ intrinsic and extrinsic parameters.
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The normal vector, n̂, and distance, d⊥, are calculated by selecting a plane-type model
and applying RANSAC method, fixing a distance threshold of 0.01. Before this, the data
is process with the PCL library [116] to remove any corrupted values. If no RANSAC
inliers are found, the program logs that no planar model could be estimated. If a plane
ax+ by+ cz+ d = 0 is found; the node extracts the normal vector and the perpendicular
distance to the plane. Note that a, b, and c are the components of the normal vector to
the plane. d in the plane equation is the perpendicular distance from the origin to the
plane scaled by the magnitude of the normal vector. According to this, the normalized
normal vector, n̂, and the real distance to the plane, d⊥ are obtained as:


n̂ = {a, b, c}T√

a2 + b2 + c2

d⊥ = d√
a2 + b2 + c2

(4.3a)

(4.3b)

Additional code was written to represent the normal vector as a marker in Rviz, which
can be seen in Figure 4.17b. In order to represent this normal vector the node subscribes
to the position of the handle centroid, which is published by a different node since for
calculating it the SR305 camera mounted on the Z1 arm is used. A pseudocode of this
node is shown in Algorithm 3.

(a) (b)

Figure 4.17. Door detection: (a) Door center, (b) Normal vector.

4.4.3. Handle Detection and Point Cloud Segmentation

The weights corresponding to the yolo_v8n-seg model are used in the second ROS
node, handle_pc, for detecting and segmenting door handles. This node additionally
processes the image and applies the resulting segmentation binary mask to the depth
image. This way, a segmented point cloud corresponding to the handle is obtained.

In first place, the node subscribes to the RGB and depth images from the depth camera
and runs inference on the trained YOLO model with the RGB image. To improve the

VISION ALGORITHMS 67



TRABAJO FINAL DE MÁSTER - DANIEL SOTELO AGUIRRE
DEVELOPMENT AND INTEGRATION OF A NMPC-CONTROLLED LEGGED-MANIPULATOR PLATFORM FOR SEARCH
AND RESCUE OPERATIONS

Algorithm 3 Door Detection and Reference Calculation
Require: YOLO weights, D435 camera parameters, point cloud P, handle centroid C
Ensure: Door center references (∆xref, ∆yref, ∆ψref)
1: Initialize ROS node YOLO model with pre-trained weights
2: Acquire RGB image, depth image, and P
3: d⊥, n̂ ← Compute plane from P using RANSAC
4: door_box ← Detect door in RGB image using YOLO
5: door_center ← Calculate center of detected door in RGB image coordinates
6: Transform door_center to depth image coordinates
7: depth_value ← Get depth at transformed coordinates
8: Visualize n̂door with its origin in the centroid C
9: Calculate (∆xref, ∆yref, ∆ψref) using normal_vector, door_center, and depth_value

10: return (∆xref, ∆yref, ∆ψref)

model performance the maximum number of detections is fixed to one, so that the robot
can only detect one handle at a time. The output binary mask is then applied to the
depth image to obtain a segmented depth image, as shown in Figure 4.18a. Note that
in order to do this, the binary mask is resized and aligned with the depth image resolution
using the pre-calibrated intrinsic and extrinsic parameters of the Intel RealSense camera.

(a) (b)

Figure 4.18. Handle detection: (a) Segmented depth image, (b) Segmented point cloud.

Finally, this node computes the point cloud derived from the segmented depth
image. In order to do this, Equations 3.11a and 3.11b are used. However, in order to
significantly reduce the computational load, a downsample factor of 4 is applied so
that only 25% of the depth image pixels are converted into 3D points, as shown in Figure
4.18b. The point cloud is published in a new topic to be read by other ROS nodes. The
pseudocode for this ROS node is presented next.
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Algorithm 4 Handle Segmentation and Depth Processing
Require: YOLO weights, SR305 camera RGB and depth images and (fx, fy, cx, cy)
Ensure: Point cloud Phandle and masked images

1: Initialize ROS node and YOLO model with pre-trained weights
2: Acquire RGB image IRGB and depth image Idepth
3: Dmask ← YOLO detect mask on IRGB
4: Imasked ← IRGB masked with Dmask
5: Mdepth ← Idepth masked with Dmask
6: Phandle ← Generate 3D point cloud from Mdepth using (fx, fy, cx, cy)
7: Publish Imasked, Mdepth, and Phandle

4.4.4. Point Cloud Analysis

The ROS node in charge of processing the generated point cloud to extract relevant
data is handle_centroid. In particular, it applies advanced data analysis techniques such
as RANSAC and PCA to obtain the handle centroid and its orientation. The pseudocode
of this node is shown in Algorithm 5.

Algorithm 5 Point Cloud Centroid and Orientation
Require: Handle pointcloud Phandle, door normal vector n̂
Ensure: Handle centroid C and principal axes visualization

1: Initialize ROS node, subscribers and publishers
2: np_points ← Convert Phandle to points array np_points
3: C ← mean(np_points)
4: Publish centroid as PointStamped
5: Fit RANSAC model to np_points
6: Extract inliers inlier_points
7: if inlier_points < 2 then
8: return
9: Perform PCA on inliers to get the first principal component x_axis

10: Compute z_axis← cross_product(n̂, x_axis)
11: Normalize x_axis and z_axis
12: Compute y_axis← cross_product(z_axis, x_axis)
13: Ensure axis consistency
14: Publish axes as Marker

First, this node subscribes to the point cloud topic and calculates its centroid by
converting it to a numpy array and calculating its mean. Then, a RANSAC regression
algorithm is used to fit the points to a line to remove possible outliers. Next, PCA is
applied to obtain the principal components of the inlier points. Just the principal compo-
nent with the largest variance, corresponding to the handle main direction, is normalized
and used. Then, the node is subscribed to a topic where the normal vector to the door
wall is published. Using these two normalized vectors, the third direction, perpendicular
to both the handle direction and the wall normal is obtained. Finally, a marker is pro-
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grammed to visualize the handle orientation in RViz with its origin in the handle centroid.
In order to avoid continuous direction change in the principal component, a consistency
evaluation function is introduced to change the sign if necessary. Both the centroid and
the orientation axes of the handle can be seen in Figure 4.19.

Figure 4.19. Handle centroid and orientation axes calculation.

4.4.5. Door Radius Estimator

The fourth and last node of the vision sub-system, door_params incorporates a ROS
service that computes and returns the door’s swing radius, Rm. In order to calculate
it, the normal distance to the door’s wall plane from the arm camera, d⊥arm , is required.
Though it is true most doors have a similar rotation radius of around 0.7 m, it was decided
to implement this code to generalize more the robot’s vision capabilities so that it would
be able to open any type of handle door.

Figure 4.20. Pointcloud for door normal distance estimation.

The normal distance to the door, d⊥arm , is calculated in the same way as it was done
in Algorithm 3. In this case, though the normal distance to the arm camera could be
estimated from the one detected in the robot base, it was decided that the system would
be more robust if calculated from the arm perspective. This is because this is the part of
the robotic system in charge of the manipulation tasks that will be closer to the interactive
objects, and so, it will provide better measurements.
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In order to compute the door radius, Rm, this node subscribes to the handle mask
topic and computes its centroid. To be able to compute the rotation radius it is also
necessary to calculate the door edge that is opposite to the handle side. In order to
do this, the node also subscribes to the RGB image topic and converts it to grayscale,
since edge detection algorithms typically operate on this version. Canny edge detection
is applied to this image to retrieve the edges.

The Canny edge detector algorithm from OpenCV first smoothens the image by
applying a Gaussian blur and then finds the gradient of the image intensity at each
pixel using the Sobel kernel (whose size was fixed to be 3×3), which transforms the
image to something similar to what is shown in Figure 4.21a. Afterwards, non-maximum
suppression is applied to the blurred edges image to obtain sharper edges by suppressing
all the gradient values except the local maxima (locations with sharpest change of intensity
value). Next, double thresholding is applied to the edges resulting in the calculation of
weak and strong edges depending on whether they are above one or the two threshold
limits (in the code these limits were set to 50 and 150, respectively because they were
tested to work reasonably well). Finally, the weak edges that are not connected to strong
edges are suppressed, obtaining the final edges image, which can be seen in Figure 4.21b.

(a) (b)

Figure 4.21. Canny edge detector: (a) Sobel kernel [126], (b) Door opening simulation.

Next, the OpenCV Hough Line Transform is applied to the edges binary image to
isolate straight lines. It works by mapping each edge pixel onto the Hough space, where
straight lines are described in polar coordinates by the distance from the origin to the
closest point on the straight line (x0, y0), ρ; and the angle between the x-axis and the
line connecting the origin with its closest point, θ (see Figure 4.22a). In the Hough space
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an accumulator array is used to count the occurrences of each (ρ, θ) pair. Each point in
the image votes for all lines that could pass through it in the Hough space. The more
points (or votes) that accumulate, the higher the likelihood that a line exists there. The
minimum number of intersections needed to detect a line was set to 200 with unitary
resolutions for both ρ and θ.

(a) (b)

Figure 4.22. Hough Line Transform: (a) Hough space [127], (b) Door opening simulation.

These lines are filtered to just keep the vertical ones (since it is supposed the robot
will estimate the door radius in a stable standard position). This is done by checking that
the difference of x-coordinates of two far away points belonging to each straight line do
not overpass a certain threshold, fixed in 200 pixels. From the resulting approximately
vertical lines, two on the handle side and two on the opposite side; the ones on the handle
side and the one on the opposite side corresponding to the door frame are discarded. This
is done by taking the second one with the maximum x-axis distance to the previously
calculated handle mask centroid (the first one if only one line is detected in the opposite
side of the handle), which is shown in red color in Figure 4.22b. This resulting maximum
distance is the radius in pixels, Rp, which is shown in green color in Figure 4.22b. To
convert it to meters, the distance to the door, d⊥arm ; and the focal length, fx, are used as
indicated in Equation 4.4:

Rm = Rp ·
ddoor
fx

(4.4)

Additional code has been written to manage possible error situations such as not
having the required variables to compute the door radius. The pseudocode corresponding
to this node is shown in Algorithm 6.
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Algorithm 6 Door Radius Estimation
Require: Point cloud P , RGB image IRGB, focal length fx, and handle mask Dmask
Ensure: Door radius Rm

1: Initialize ROS node, subscribers, and publishers
2: Cmask ← centroid(Dmask)
3: gray_img ← img2grayscale(IRGB)
4: edges ← canny_edge_detector(gray_img)
5: hough_lines ← hough_transform(edges)
6: if Cmask and hough_lines found then
7: a ← get_axis(hough_lines)
8: Rp ← get_radius(Cmask, a)
9: Publish annotated image

10: Convert P to PCL and apply RANSAC to find plane π
11: if π found then
12: Calculate door normal distance d⊥arm

13: Rm ← compute_radius(Rp, fx, d⊥arm)
14: Provide Rm via service response

4.5. Planner Algorithm

The planner algorithm in this project plays a crucial role in guiding the robot for
specific tasks such as door opening and locomotion. However, it is important to note
that the planner developed here is not a general-purpose navigation planner for
obstacle avoidance, as this was beyond the scope of this project. Instead, the primary
focus was on the control aspects of the robot, leveraging the existing NMPC controller
for locomotion tasks, and developing a specific planner for door manipulation. In
general locomotive tasks, such as the SAR environments where the robot will be tested,
the trajectory publisher integrated within the NMPC controller assumes the role of the
planner, generating references for the base from the end-effector commands. For door-
opening tasks, a specialized planner was developed within the qm_planner ROS package.

4.5.1. Trajectory Publisher for Locomotion Tasks

In pure locomotion tasks, the NMPC controller’s trajectory publisher is used to man-
age the robot’s movement across unstructured terrains. Note that it does not account
for obstacle detection through perception, but several previous projects in the lab have
already dealt with this, and the solution presented in this work could be easily integrated
with them in the future. The robot’s trajectories are computed based on the NMPC’s
state estimation and end-effector position, and it was modified from the one in the original
repository to include the foot heights and a boolean for base fixation to handle constrained
movement during tasks such as door opening.
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It basically accounts with a time-to-target estimator, which calculates the time re-
quired for the robot to reach a target position, considering both displacement and rota-
tion. It calculates the maximum of both linear and rotational movements to ensure the
robot moves at an appropriate speed based on both displacement and rotation.

With this time estimation, the trajectories publisher generates a trajectory that guides
the robot from its current state to the target pose defined from the end-effector position
target, using both base and end-effector data. For this, it considers if the boolean “fixed
base” flag is activated, to restrict the movement in the y-axis ensuring the robot remains
while executing specific tasks. This feature was introduced for door opening to ensure the
base is not aligned with the arm position during door traversal since this led to collision
with the door frame.

It basically enables to create trajectories discretized in the time-to-target period esti-
mation, through the definition of the position and orientation of both the end-effector and
the base. The end-effector trajectories are directly defined from an interpolation between
the target final position and orientation and the current one. With respect to the base,
roll and pitch are continuously constrained to zero during this work to ensure maximum
stability (however, this could be modified for enabling the robot to incline to pick an
object for the ground for example). The base height is fixed to the defined CoM height
(0.4 m in most cases) plus the average height of the feet in contact with the ground (to
allow for vertical objects traversal, such as stairs without undesired collisions). The yaw
rotation was left free (but it can be fixed to continuously align with the end-effector yaw
or to zero if no base yaw is desired), and the x-position of the base is determined by the
one of the end-effector minus the distance in that axis from the base to the arm. Finally,
with respect to the y-coordinate, if the fixed base flag is active then the base is fixed in
that coordinate to ensure it passes through the door frame safely.

4.5.2. Planner for Door Opening Tasks

For door-opening tasks, a specific planner was developed within the qm_planner ROS
package. This planner handles the complex task of positioning the robot with respect to
a door and autonomously executing the steps necessary to open it.

4.5.2.1. Robot Base Reorientation with Respect to the Door

The reorientation process in the robot’s planner module is crucial to ensure that the
robot is aligned with the door for the subsequent task of opening it. The robot may
start from positions and orientations that are not aligned with the door, and this process
ensures that the base of the robot is parallel to the door’s wall plane. This ensures an
optimal approach to handle and open the door.
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The provided algorithm consists of several steps and components to achieve this. The
process involves reading the robot’s current position, calculating the target pose (position
and orientation), and reorienting the robot based on the difference between the current
and desired orientation with respect to the door. The pseudocode for the program is
presented in Algorithm 7.

Algorithm 7 Robot Base Reorientation with Respect to the Door
Require: Initial target pose, current end-effector pose, door reference values
Ensure: Robot base aligned with door for door opening
1: Initialize ROS node, publishers, subscribers, and service client
2: Set initial target pose and publish it
3: Set position_reached to false
4: while ROS is running do
5: Update current end-effector pose and check if target is reached
6: if position_reached is true then
7: if initial_position_reached is false then
8: Set initial_position_reached to true
9: Retrieve door reference values

10: Publish gait command “trot” and adjust target pose
11: Set position_reached to false
12: else if door_initial_position_reached is false then
13: Publish gait command “stance” and check door position
14: if position is acceptable then
15: Set door_initial_position_reached to true
16: else
17: Reposition robot and publish “trot” command
18: Set position_reached to false
19: else
20: Wait for new target
21: else
22: if new target detected then
23: Publish target position and update last pose
24: Sleep for loop duration

The algorithm begins constantly tracking the robot’s current pose and checking whether
it is near the target position. This is done through a function that retrieves reference val-
ues for the door’s position and orientation relative to the robot through a ROS service.
Position updates are handled by a callback function that monitors the distance between
the robot’s current and target poses. When the robot is within a small threshold (0.07
m), it signals that it has reached the desired position and prepares for the next step.
Stance command is issued for more accurate reference measurement for better alignment.
The loop continues adjusting the robot’s position until the door’s reference values indicate
that the robot is properly aligned. Once the alignment is confirmed, the robot is ready
for the door-opening task.

4.5.2.2. Door Detection, Approach, and Opening

The door-opening planner developed in this project allows the robot to autonomously
approach and open a push-type door (pull-type door opening was not finally tackled due
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to time constraints). The process involves a sequence of steps, such as detecting the door
handle, computing the door’s opening radius, and commanding the robot to manipulate
the door based on its type (left or right handle). Below is a detailed explanation of how
the system functions:

1. End-effector pose and target pose handling: The robot continuously updates
its knowledge of the end-effector’s position using data published by the robot’s
state observation system. A callback function subscribes to the current end-effector
position topic and continuously checks if the target position has been reached within
a certain threshold.

2. Centroid detection and transformation: The planner uses data from the vision
module to detect the 3D location of the handle centroid of the door handle. This
information is captured via a ROS topic subscription, and the centroid coordinates
are transformed from the camera frame to the world frame. These transformed
coordinates are used to update the robot’s target position, ensuring that the end-
effector is correctly aligned with the door handle.

3. Distance threshold handling: As the robot approaches the door, a distance
threshold is used to stop the centroid update once the robot is sufficiently close
to the handle. This prevents the robot from continuously adjusting its position
unnecessarily, and also door opening fails provoked by perception issues associated
to excessive closeness to the door. This way, the normal distance to the door is
continuously monitored to deactivate centroid target updates.

4. Gait command control: The robot uses a series of predefined gait commands,
such as “trot” and “stance”, to control its movement. For instance, when the robot
needs to take accurate door radius measurements, the “stance” command is issued,
while when the robot needs to approach the door handle, the “trot” command is
issued.

5. Radius calculation and door type detection: One of the critical steps in the
door-opening process is calculating the door’s radius (i.e., the distance between the
door’ hinge and handle). This is done through the previously commented ROS
service, which is called once the robot has reached the initial position. The service
also returns the door type, indicating whether the handle is on the left or right side.
This information is crucial because it determines the direction in which the robot
must apply the force to open the door.

6. Opening the door: After calculating the radius and reaching the door handle,
the robot begins the door-opening process. The robot pushes the door by adjusting
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its target position in small increments. During this process the fixed base flag is
activated to let the base target position be in the middle of the door frame. Note
that this is needed to avoid the collision between the base and the door frame, since
the base tends to align with the end-effector without any constraints.

Moreover, this constraint is not imposed from the beginning to the base because it
was observed to provoke instability in the door handle approach phase (probably
due to the overrestriction of the optimization control problem). the robot adjusts
its movement to push the door in the appropriate direction depending on the handle
location side. Then the door is gradually opened in small angle increments defining
the end-effector target pose. Once the door is opened, the robot moves to its final
positions, completing the door-opening task.

7. Handling different scenarios: The planner accounts for several scenarios during
the door-opening task:

• Reaching initial position: Before starting the door-opening process, the
door must reach an initial target position near the door (around 1.5 m away
and with the arm positioned at 1 m height from the ground). Once it is
confirmed that the initial position is reached, the robot begins the door handle
approach phase.

• Receiving a new target centroid: If a new centroid data is received, the
robot updates its target position accordingly and starts moving toward the
new centroid.

• Pushing the door: If the door is not fully opened the robot continues to
push in the correct direction until the final door angle is reached.

• Task completion: Once the door is fully opened, the robot transitions to its
final position, confirming that the door-opening task is complete.

8. Positon command publishing: Throughout the process, the robot continually
publishes its target position. This ensures that the NMPC controller is aware of the
desired positions, allowing the robot to move towards its target smoothly.

In typical door-opening tasks involving mobile manipulators, the problem is often
simplified by using separate systemsproblem is often simplified by using separate
systems for locomotion and manipulation, fixing the robot’s base in a stable position
before executing the manipulation. While this approach reduces complexity and ensures
stability, it lacks dynamism, takes longer to complete, and limits adaptability to unex-
pected environmental changes. The proposed solution in this work integrates locomotion
and manipulation into a single system, allowing for a more fluid and dynamic operation
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without the need to fix the base. Although this solution is still in its initial stages and
could be improved to handle scenarios like door pulling, spring-loaded doors, or aware-
ness of the door’s state during opening, it presents a step toward more autonomous and
efficient robotic manipulation tasks.

Algorithm 8 Door Opening Planner
Require: Initial target pose, end-effector state, door handle centroid, door handle type (left or right)
Ensure: Door opened and final position reached
1: Initialize ROS node and publishers/subscribers
2: Initialize initial target pose
3: Set position_reached to false and wait for target to be reached
4: while ROS is running do
5: if position_reached is true then
6: if initial_position_reached is false then
7: Set initial_position_reached to true
8: Call service to compute door radius and type
9: Publish gait command "trot" and wait 3 seconds

10: else if new_centroid_received is true then
11: Move to new centroid position and reset new_centroid_received flag
12: else if start_opening is true and current_angle < final_angle then
13: Adjust end-effector position and orientation to push the door
14: if door_type is right handle then
15: Adjust y position positively and rotate end-effector clockwise
16: else if door_type is left handle then
17: Adjust y position negatively and rotate end-effector counterclockwise
18: if current_angle ≥ final_angle then
19: Set door_opened to true and stop opening
20: Increment current_angle by delta
21: else if door_opened is true then
22: Move end-effector to final position after door is fully opened
23: else
24: Wait for new target or adjustments
25: if distance_threshold_met is false and door is not opened then
26: Publish gait command "stance" to push the door further
27: if position_reached is true then
28: Publish gait command "trot" and center the base
29: Set start_opening to true
30: else
31: if first_publish or new target position is detected then
32: Publish target position to the positionCommandPublisher
33: Update last_target_pose and reset first_publish flag

4.6. Software Integration

The software integration phase of this project brought together the key modules—
control, vision, and planner—into a unified ROS-based architecture which can be seen in
Figure 4.23 extracted using the rqt_graph tool. This section will explain how the differ-
ent components interact and communicate with each other through the ROS ecosystem,
focusing on the real-time communication and coordination between the NMPC controller,
the vision system, and the high-level planner.
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At the core of the architecture is the control module, which is responsible for exe-
cuting the low-level commands generated by the NMPC controller. The controller node
receives a series of desired base and end-effector trajectories from the target trajectories
publisher node. This node subscribes to the observation from the state of the quadruped
manipulator and the interactive RViz marker to finally publish the robot position target.

The vision module, which provides visual and depth information, is integrated via
the robot’s camera sensors: /camera1, which is the SR305 camera, and /camera2, which
is the D435 camera. This module consists of four ROS nodes responsible for segmenting
and generating the handle point cloud (/handle_pc), determining the handle centroid
and orientation (/handle_centroid), calculating the door radius (/door_params), and
determining the door center axis (/door_center). These nodes each publish on some
topics which are required for the planner, such as the handle centroid, but also have
optional publishing (through a publish flag) for visualization of intermediate results, such
as the edge detection image of the door.

The planner module is responsible for generating the high-level motion plans that
guide the robot to perform the door opening task. Two planner nodes are used, though
only one is active each time: /go_to_door (for repositioning normal to the door) and
/open_door (for performing the opening task). The planner takes inputs from the vision
system and from the current state of the robot to compute the end-effector positions that
are used as a reference by the controller’s trajectory publisher node from /planner/cmd.
These planner nodes additionally publish the gait commands in /gait_command_topic,
which interfaces with the gait topic publisher node of the controller, and a boolean on
/fixed_base to switch the target trajectories publisher constraints (useful for door traver-
sal).

The overall communication between these three modules is critical to ensuring that
the robot can execute complex tasks such as door opening. Additional nodes are used
to publish the transforms of the walls and the door,which is considered by ROS to be a
2-DOF robot, to be able to properly visualize them in RViz.
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Figure 4.23. ROS nodes and topics program architecture.
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4.7. Hardware Integration

Once the software was finished, the whole hardware system was assembled. In order
to do this, a 10 mm thick methacrylate plate was designed and milled to serve as
interface between the Z1 arm and the quadruped since the original manufacturer support
was not available in the lab. Four of the holes of this plate are threaded to enable the
fixation of the Z1 arm, while the other four are through holes that permit to fix the plate
with the arm to the quadruped through sliding nuts located in the two metallic profile
rails. The plate design and assembly can be seen in Figure 4.24.

Figure 4.24. Methacrylate plate design and assembly.

Then, the SR305 camera support components and cover were 3D-printed using a Prusa
MK4 3D printer [128]. The support pieces were printed in Polylactic Acid (PLA) at 20%
of infill, while the camera cover was printed in Thermoplastic Polyurethane (TPU). The
resulting pieces can be seen in Figure 4.25.

(a) (b)

Figure 4.25. 3D-printed camera components: (a) Support, (b) Cover.

With respect to the connections, the AlienGo quadruped communicates with the Z1
manipulator through an Ethernet cable. The power 24 V connection required for the
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Z1 arm can’t be directly made to the AlienGo since its maximum output voltage is 19
V. When this was discovered did not make much sense since the arm is supposed to
be adapted to the quadruped platform and both are from the same manufacturer. A
transformer would be needed for making the connection onboard, but since there was no
availability, the connection of the arm was directly made to the room plug through its
corresponding charging transformer. This limitation is acceptable for testing purposes
since a plug extender can be used, but in the final implementation a transformer would
be needed.

Finally, since the Z1 arm may be damaged or damage the door during interaction
testing, it was decided to add silicone pads to the gripper to prevent this. These silicone
pads were attached through double face tape, resistant but easily removable, as it can be
seen in Figure 4.26.

Figure 4.26. Z1 gripper silicone pad protections.

Finally, the controller code was adapted for real hardware implementation
through the Z1 SDK. The GitHub repository for the Kinova Jaco was taken as a refer-
ence and the functions concerning the robotic arm were accordingly substituted with the
equivalent ones provided by Unitree’s Z1 SDK. This hardware adaption of the code is
available as a separate branch in the repository since several controller files were modified.
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Chapter 5

Results and Discussion

This chapter presents the results of both simulation and real-world testing phases,
focusing on the system’s performance in various scenarios. During simulation testing, the
system’s ability to traverse non-structured environments and its door-opening capability
were evaluated. The real-world testing phase further assessed the implementation of the
NMPC controller on the AlienGo robot and the accuracy of the vision system. The
final complete hardware integration with the Z1 was done but there was no time to
test the whole-body NMPC controller on the real platform due to time constraints. The
discussion highlights the effectiveness, challenges, and improvements observed throughout
these tests.

5.1. Simulation Testing

This section outlines the evaluation process carried out in simulated environments
to validate the performance and robustness of the quadruped manipulator system be-
fore transitioning to real-world testing. This testing phase was crucial for assessing the
controller’s capabilities in handling various complex and unstructured scenarios. Addi-
tionally, it enabled to discover and highlight the system limitations for future work.

The simulation environments were carefully designed to evaluate specific features,
present in real-world obstacles and situations during SAR. These tests include tracking
the end-effector trajectory and navigating through non-structured terrains such as pallet
obstacles, unstable platforms, stairs, ramps, tunnels with uneven terrain, and maze-like
paths. Additionally, a dedicated simulation scenario for door opening was created to
assess the manipulator’s precision and effectiveness in handling such tasks.
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Through these simulations, the robot’s ability to follow precise trajectories, maintain
stability on uneven surfaces, and execute complex maneuvers was thoroughly evaluated,
providing critical insights into the system’s strengths and areas for further improvement
before proceeding to real-world testing.

5.1.1. End-Effector Trajectory Tracking

In this simulation test, the objective was to assess the quadruped robot’s ability to
accurately track a circular trajectory with its end-effector. This type of trajectory is
commonly used in robotic systems to evaluate the precision and stability of the controller
when performing continuous and smooth motions.

The test was designed to have the quadruped’s end-effector follow a circular path in
a horizontal plane while maintaining constant yaw orientation. The circle has a radius
of 1.2 m. The robot’ end-effector was required to start at the circle’s center and then
progressively move along the circular path while maintaining a constant height. The code
for this test can be found in the qm_planner package.

Figure 5.1. Comparison between planned and actual positions of the quadruped manipu-
lator’s base and end-effector.

Figure 5.1 shows the base and end-effector trajectories and compares it with the actual
followed path. The original trajectory that is introduced into the controller as reference
input is the planned end-effector trajectory, which is seen in the figure to be an almost
perfect circle. The controller is programmed with an equality constraint in the NMPC
optimization problem and with an equality task in the WBC controller to ensure end-
effector position tracking. The target base trajectories are calculated by the trajectory
publisher from the user input end-effector planned trajectory and the current state of the
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system. It can be seen that the controller accurately tracks the desired trajectory. In
the z-coordinate it is seen how when the controller starts working the base and the arm
move towards their reference heights. The base height is very accurately track while the
end-effector’s one is less accurate. This is reasoned to be due to its larger kinematic chain
to the base which amplifies the existing position errors. Another possible contribution
could be the fact that the end-effector position tracking task belongs to a lower hierarchy
level that the base height tracking.

To quantitatively assess the performance, the Root Mean Squared Error (RMSE)
error metric was employed, which is particularly sensitive to large deviations, thereby
penalizing heavily significant errors. The RMSE was computed for each coordinate sepa-
rately to provide a detailed component-wise error analysis.

RMSE =

√√√√ 1
N

N∑
i=1

(desiredi − actuali)2 (5.1)

Base End-Effector
x y z x y z

RMSE (cm) 2.01 1.60 2.68 26.95 7.72 5.53

Table 5.1. RMSE values for base and end-effector trajectories.

The obtained RMSE values corresponding to each of the base and end-effector trajec-
tories components can be seen in Table 5.1. In general low values are observed, with
higher values for the end effector for the commented reasons. The x component is spe-
cially large because of the starting movement phase. In addition to this, it was considered
interesting to analyze how well the odometry measures the robot’s actual state. As com-
mented previously, this odometry measurements are obtained through a Kalman filter
that uses visual odometry from the front camera, together with the motor encoders and
the IMU. Figure 5.2 shows a comparison between the odometry measurement and
the ground truth for each position and orientation component (in Euler angles). The
low RMSE values in Table 5.2 show the odometry is reliable.

Base Position Base Orientation
x y z ϕ θ ψ

RMSE 2.19 cm 1.91 cm 0.9 cm 0.235◦ 0.304◦ 0.516◦

Table 5.2. RMSE values for base odometry position and orientation.

Additionally, in Figure 5.2 it can be observed how the robot tends to maintain the
base parallel to the ground without rotations due to the imposed constraints.
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Figure 5.2. Odometry and ground truth base position and orientation comparison.

5.1.2. Non-Structured Environment Traversal

This section details the testing of the quadruped robot’s ability to navigate various
unstructured environments, simulating the challenges typically encountered in SAR op-
erations. To focus on the robot’s locomotion capabilities, the tests employed a separated
NMPC controller. This approach was chosen after observing that the added mass and
dynamics of the robotic arm caused significant destabilization in more complex environ-
ments, making it necessary to isolate the locomotion system for accurate assessment.

While the robotic arm has the potential to enhance the quadruped’s stability by
dynamically adjusting its position, it was decided to keep the arm inactive to focus
on evaluating the quadruped’s locomotion performance in isolation. This way, the
NMPC controller was solely responsible for managing the quadruped’s movement, while
the arm’s joints and gripper were controlled by separate PID controllers. In terms of
gait pattern, a standing trot was predominantly used during the tests due to its superior
stability, as it ensures all four feet maintain brief contact with the ground during each
gait cycle.

5.1.2.1. Pallet Obstacles Path

This test was designed to evaluate the quadruped’s ability to navigate a series of
obstacles with varying heights. These obstacles simulate uneven terrain that may be
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encountered in real-world SAR operations. The focus of this test was to assess the NMPC
controller’s effectiveness in maintaining stability and smooth movement over challenging,
discontinuous high surfaces. It must be noted that no perception was included into
the NMPC model to optimize the step placement performance. For this test, the feet step
height was fixed to 26 cm for ensuring comfortable traversal, the CoM height to 0.36 m,
and the reference velocity to 0.1 m/s. Figure 5.3 shows the path followed by the robot to
traverse the pallet obstacles.

Figure 5.3. Pallets path traversal.

Since the robot lacks the ability to anticipate when a pallet will appear in its path, the
performance of the system relies heavily on the fast, reactive control provided by the
NMPC. This is particularly evident when dealing with the taller pallets, where the feet
suddenly drop into the gaps between the pallets. Despite these challenges, the controller
performs well, allowing the robot to recover and continue its trajectory, as illustrated in
Figure 5.4.

Figure 5.4. Base and feet trajectories during pallet traversal.

The system also demonstrates robust behavior when the robot attempts to climb onto
the next pallet and the feet slip downward. However, velocity limitations were encoun-
tered; for instance, at a speed of 0.2 m/s, the quadruped became significantly destabilized
and eventually fell. This issue could be mitigated, and performance significantly im-
proved, by using the front depth camera to detect and segment optimal foot placement
areas. Integrating this data into the NMPC algorithm would enable safer operation and
more efficient stepping. The base orientation ground truth Euler angles’ evolution during
the traversal is shown in Figure 5.5. It can be observed how the NMPC manages to keep
them around zero due to the imposed constraints in the trajectory planner.

SIMULATION TESTING 87



TRABAJO FINAL DE MÁSTER - DANIEL SOTELO AGUIRRE
DEVELOPMENT AND INTEGRATION OF A NMPC-CONTROLLED LEGGED-MANIPULATOR PLATFORM FOR SEARCH
AND RESCUE OPERATIONS

Figure 5.5. Ground truth base orientation during pallet traversal.

5.1.2.2. Unstable Platform

The unstable platform test challenges the robot’s balance and adaptability by requiring
it to traverse a platform that is deliberately unsteady. This scenario is intended to simulate
situations where the ground beneath the robot may shift or tilt unexpectedly, testing the
NMPC controller’s ability to respond quickly and maintain the robot’s equilibrium.

Figure 5.6. Unstable platform path traversal.
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For this test the base CoM height was fixed to 0.4 m, with 0.15 m height steps and
0.2 m/s standing trot reference velocity. The main interest of this test was to check if
the controller is able to maintain equilibrium even without having a model of the object
dynamics with which the robot is interacting. Figure 5.7 shows the base positions and
orientations’ evolution during the test and how the NMPC controller manages to stabilize
the robot even when external uncontrolled moving ground disturbs its trajectory.

Figure 5.7. Ground truth base positions and orientations during unstable path.

Though it is not easily appreciated in Figure 5.6, the platform was supported by two
non-aligned low friction (µ = 0.1) 10 cm spheres; which led to continuous moving of
the platform. In second 15 a significant disturbance occurs when the center of mass of
the robot provokes a change in the torque direction of the platform, making it rotate to
the opposite side. In the x-position evolution curve it can be seen how the robot manages
to keep an almost constant velocity of 0.2 m/s as depicted by the constant slope. The y
position suffers some variations to properly stabilize the robot at every moment.

5.1.2.3. Stairs and Ramp Path

In this stairs and ramp path test, the quadruped is tasked with ascending and de-
scending a series of stairs and ramps. The CoM height was initially set to 0.4 m, the
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step height to 0.15 m, and the friction coefficient from the stairs surface to µ = 0.5. This
test was crucial for evaluating the robot’s capability to handle performance in maintain-
ing stability and ensuring smooth transitions between different inclinations. Figure 5.8
depicts the trajectory followed by the quadruped during the test. Good performance was
observed during both the upstairs and ramp tracks. However, at the beginning of the
downstairs stage, the robot failed to maintain stability and collapsed. This behavior
was repeatedly seen for different step and base CoM heights and gait patterns.

Figure 5.8. Stairs and ramp path traversal.

It was concluded that the failure to descend the stairs was primarily due to the exces-
sive extension of the legs as they reached for the next step. This excessive leg extension
elevated the robot’s center of mass (CoM) relative to the contact surface, thereby increas-
ing the system’s instability. This issue was exacerbated by the small size of the stair
steps, which provided limited surface area for secure foot placement. Furthermore, the
absence of a perception system to optimize foot placement contributed significantly to
the instability, as the robot was unable to adjust its gait or foot positioning dynamically
to maintain balance. Consequently, these factors combined led to the robot’s inability to
descend the stairs effectively, highlighting the need for both mechanical adjustments and
the integration of a perception system to improve stability in such scenarios.

Figure 5.9. Base and feet trajectories during stairs traversal.
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Figure 5.9 illustrates the evolution of the base height during the track, along with the
feet trajectories leading up to the crash in the downstairs section. The figure shows a
robust behavior during the climbing stage and how the height continuously increases to
maintain the distance with the contact feet. Another factor that is thought to influence
the instability of the system when going downstairs is the position of the robotic arm,
which weights around 4 kg. A possible solution to this problem could be to modify the
base pitch angle reference when the robot is going to go down stairs or ramps. This could
work, specially when combined with the perception system, because that way the robot’s
CoM would keep closer to the surface, increasing its stability.

5.1.2.4. Tunnel with Uneven Terrain

This test simulates a confined and irregular environment, forcing the robot to navigate
through a narrow tunnel with an uneven floor. This test assesses the quadruped’s ability to
maneuver in tight spaces while dealing with unpredictable ground conditions, highlighting
the NMPC controller’s capability in maintaining precise control under such constraints.

Figure 5.10. Tunnel path traversal.

For this test, the CoM base height was set to 0.25 m to be able to pass underneath a
0.6 m tall tunnel (without considering the uneven terrain elevation) with the manipulator
arm and its depth camera support structure. The target velocity was set to 0.2 m/s with
standing trot gait schedule. Figure 5.11 shows the robot’s trajectories.

Figure 5.11. Base, end-effector and feet trajectories during uneven terrain tunnel traversal.

SIMULATION TESTING 91



TRABAJO FINAL DE MÁSTER - DANIEL SOTELO AGUIRRE
DEVELOPMENT AND INTEGRATION OF A NMPC-CONTROLLED LEGGED-MANIPULATOR PLATFORM FOR SEARCH
AND RESCUE OPERATIONS

In the figure it can be observed how the end effector does not collide with the tunnel
ceiling and how the controller manages to satisfy the CoM constraint successfully while
traversing the uneven terrain. Looking at the feet trajectories, it is observed they are
highly irregular due to multiple slips during the robot’s motion, but still the robot man-
ages to reach the end of the tunnel with good stability. T, highlighting the controller’s
effectiveness. This result demonstrates the quadruped’s ability to navigate a confined and
irregular environment using the proposed NMPC system.

5.1.2.5. Maze Traversal

Finally, the maze traversal test is based on four simple, modularly-designed mazes,
each with different block configurations but the same overall shape. These mazes, con-
structed by another laboratory member, present a controlled yet challenging environment
for the robot. The purpose of this test is to evaluate the NMPC controller’s effectiveness
in navigating through complex, constrained paths in different directions. By analyzing the
performance in the four configurations, the robustness and adaptability of the controller
can be better understood. Figure 5.12 shows the maze traversal for the first and fourth
environments.

(a) (b)

Figure 5.12. Mazes traversal: (a) First maze, (b) Fourth maze.

The robot was guided through command velocities to traverse each of the four mazes
multiple times, and the controller demonstrated sufficient robustness, resulting in no falls
across all experiments. It was observed that when instabilities occurred, the NMPC
quickly corrected the base orientation to prevent a fall, similar to its performance in other
tests.
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5.1.3. Force Compliance

As it was commented before, for quadruped manipulators, force compliance is crucial
to ensure stable interaction with the environment. In the initial version of the NMPC
controller, when the robot touched a surface with its end-effector, it had no mechanism
to respond with appropriate force to maintain its original trajectory. This often resulted
in crashes or destabilization during tasks that required physical contact, such as pushing
doors or manipulating objects. To address this, the NMPC was modified to incorporate a
force constraint into the optimization problem. As described in the previous chapter, this
force constraint was also integrated as a task in the WBC controller, enabling the robot
to respond with a controlled force when the end-effector makes contact with an object.

To validate this force compliance capability, a test was designed to simulate a scenario
where continuous forces are applied to the end-effector in three sequential directions. The
goal of this test was to evaluate the system’s ability to maintain stable control and respond
to these external forces while maintaining its base position and orientation. Forces of 20
N were applied in each principal direction during 3 seconds, as shown in Figure 5.13.
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Figure 5.13. End-effector forces and positions evolution.

In the figure, it can be observed that the first applied force pulse corresponds to the
x-axis component, while the second and third force pulses show contributions from both
the y and z components. This occurs because the initial x-axis force pulse slightly alters
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the orientation of the end-effector, causing subsequent force pulses to result in forces be-
ing distributed across multiple axes. The 20 N forces applied with respect to the world
frame are thus measured as components across different axes by the end-effector force
sensor. The robot successfully responds by quickly correcting its end-effector position in
response to each force disturbance. However, a small residual error remains after stabi-
lization, which could be attributed to the tuning of the Q, R, Kp, and Kd parameters.
These parameters directly influence the control system’s responsiveness and the ability to
maintain precise tracking after disturbances.

5.1.4. Door Opening

The ability to autonomously open doors is a key feature for the quadruped robot,
particularly in SAR scenarios where access to obstructed or confined spaces is critical.
The door-opening tests focused on evaluating the system’s ability to first align itself with
the door and then execute the necessary maneuvers to successfully open it. The process
was divided into two main phases: reorientation and positioning, followed by the actual
door-opening procedure. Both phases were conducted using the NMPC and vision systems
to guide the robot in accurately approaching and manipulating the door.

5.1.4.1. Reorientation and Positioning

In this test, the robot was placed in a position and orientation that was not aligned with
the door, simulating a realistic scenario where precise initial positioning is not guaranteed,
as shown in Figure 5.14. Several initial positions were tested, for instance, the figure shows
a 30◦ rotated initial position 1 m away from the door center normal line.

Figure 5.14. Quadruped manipulator repositioning maneuver.
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In this case, using the repositioning planner algorithm described in the previous chap-
ter, and the NMPC controller, relating the end-effector target trajectories with the ones
of the base, the robot was able to reorient itself to achieve proper alignment with the
door frame. This test was assessed qualitatively since it is not critical for the system
to function properly as long as the robot is more or less normal to the door.

The algorithm enables to modify the normal distance to the door at which the door
opening operation is desired to be started. During the test, it was observed that due
to the nature of the equations, both higher inclination angles with respect to the door
wall, and higher distances led to bigger positioning errors, especially for ∆yref, since the
noise of the measurements used for ∆xref and ψ calculations were minimized thanks to
the RANSAC plane algorithm.

It must be noted that in this work, the absence of obstacles in this repositioning
task has been assumed. For a more generic application, this reorientation task would be
performed by the navigation algorithm of the robot.

5.1.4.2. Opening Process

The door opening tests were conducted with a 5 kg push-type door, measuring 0.85
m in width and 2 m in height. This weight represents the lower end of the spectrum for
interior doors, which typically weigh between 10 and 20 kg or more, depending on material
and size. A lighter door was chosen for testing to avoid system instability, as the current
state of the gripper controller is not fully integrated with the NMPC controller, making
proper gripping more challenging for heavier doors. The door’s hinge was modeled with
low damping and friction coefficients (0.005 N·m·s and 0.0001, respectively). The handle
was assigned a 0.3 kg mass, similar damping and friction coefficients, and a low spring
stiffness of 10 N/m. Figure 5.15 illustrates the phases of the door opening process.

Figure 5.15. Push-door opening maneuver.

As shown in Figure 5.15, several phases can be identified. In the first phase, the robot
successfully went to the initial position and got the visual information required for the
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handle approximation phase. Next, the target position was set to a coordinate close to
the estimated handle centroid with certain offsets to prevent from colliding. Then, the
handle was lowered and the door was slightly pushed. Finally, the base moved towards the
center of the door thanks to the imposed constraints and the manipulator accompanied
the door rotation movement.

Figure 5.16 shows the plane positions followed by the quadruped manipulator’s base
CoM and its end-effector, respectively. It can be observed that at the end of the process
the manipulator does not seem to be able to come back to its original position and this is
thought to be due to the fact the NMPC controller together with the door exerted forces
led the arm’s third joint to singularity. This could be perhaps avoided in future research
by imposing other constraints in the optimization problem. Additionally, it can be seen
the base trajectory is not as smooth as the one of the end-effector. This could be perhaps
solved by tuning the weights given in the optimization problem to each of the tracking
tasks.

Figure 5.16. Base and end-effector plane positions during push-door opening maneuver.

In any case, though this was one of the successful tests, the system was seen in general
to lack robustness. The door opening process was not always completed due to sudden
instabilities when manipulating the door. Probably these issues could be solved with
further parameter tuning and highly improved in case the door model was added into the
NMPC optimization problem. This would imply the found opening solutions could be
much more optimized than the manually-planned trajectories presented in this work.
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Figure 5.17. End-effector forces and door position evolution during door opening task.

Finally, Figure 5.17 shows the forces measured on the end-effector together with
the evolution of the two joints of the door, namely the hinge and the lever. It can be
observed how a peak vertical force is measured when the lever is lowered for enabling the
door opening. The final rotation angle of the door was fixed in the algorithm to 70◦ which
almost coincides with the final door hinge value. The x and y force components are seen
to have highly variable values along the whole door opening process. This is thought to
be due to the nature of the small continuous changes of the end-effector position. With
respect to the spring door hinge, it behaves abnormally towards the end of the simulation.
No explanation has been found.

5.2. Real Testing

The real-world testing phase aimed to validate the system’s performance under practi-
cal conditions, extending beyond the controlled environment of simulations. This section
provides an overview of the vision system’s performance in real-world scenarios, an in-
depth analysis of the results from implementing the NMPC on the quadruped robot
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(without the robotic arm), and initial steps toward hardware integration of the complete
system. These tests were instrumental in identifying both the system’s strengths and
areas for improvement, ensuring the final implementation meets the intended operational
requirements for real-world applications.

5.2.1. Vision Module Testing

The real-world testing of the vision module assessed its ability to detect doors, handles,
and estimate the rotation axis. Results showed both strengths and challenges.

The handle mask generation algorithm performed well under most conditions due
to the robustness of the trained model. However, the estimation of the door radius
struggled in complex scenarios. In some cases, vertical lines on the door misled the
system, causing incorrect rotation axis detection, as seen in Figure 5.18. Additionally,
minimal contrast between the door and frame resulted in axis detection errors, where the
frame was identified instead of the door.

Figure 5.18. Door rotation axis detection errors.

With respect to the depth processing, the system excelled in point cloud gener-
ation for the handle at the SR305 camera’s operating range. The handle’s centroid and
orientation were accurately captured, as shown in Figure 5.19. It can be observed how
the hinge plate that threads the mechanism to the door though included in the mask, is
correctly removed from the point cloud thanks to the RANSAC algorithm.

Figure 5.19. Real door handle generated point cloud.
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5.2.2. NMPC Quadruped Control

Before integrating the NMPC with the full robotic system, initial tests were conducted
using only the quadruped. This approach allowed for a focused evaluation of the
NMPC controller’s performance in managing the complex dynamics of the quadruped
robot without the additional challenges introduced by the robotic arm. The controller for
non-manipulator quadrupeds from [93], on which the manipulator quadruped repository
from [95] was based, was employed to perform the tests.

The primary objective of these initial tests was to validate the NMPC controller’s abil-
ity to maintain stability in various unstructured scenarios. The controller was responsible
for optimizing the robot’s body posture while navigating through different obstacles. The
chosen environment for its availability within the lab was a set of obstacles built in the
form of 40×40 cm modules with different types of terrains, as it can be seen in Figure
5.20.

Figure 5.20. Obstacle modules used during testing.

The conducted test consisted on traversing a 1.20 m long obstacle path both forward
and backward. In this test, the NMPC controller was not installed on the robot plat-
form itself; instead, the computer acted as the master, communicating all the necessary
information to the robot over Wi-Fi, with the robot functioning as the slave. Though
the obstacles are not challenging enough for considering them an orange area according
to NIST classification, they enabled to extract key insights from the real-world controller
functioning and validate the control system for low-complexity real-world unstructured
environments.

The results of the real-world controller functioning demonstrate its effectiveness in low-
complexity unstructured environments. The robot’s gait was set to trot for all tests, with
maximum linear and angular velocity references of 0.13 m/s and 0.15 rad/s, respectively.
The CoM height was maintained at 0.4 m. The end position commands were issued via
RViz, and for safety, the robot was manually supported by a textile handle, as depicted
in Figure 5.21b. Despite this precaution, no external force was required to correct the
robot’s behavior during the experiments.
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(a) (b)

Figure 5.21. AlienGo hardware testing: (a) Followed path, (b) Safety textile handle.

The velocity commands were issued solely in the x direction, both forward and
backward, and for yaw rotation, as illustrated in Figure 5.22.
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Figure 5.22. Comparison between velocity commands and velocities filtered estimations.

During these tests, the NMPC effectively predicted the robot’s future states and ad-
justed control inputs accordingly, ensuring smooth and stable locomotion, as shown in
Figure 5.23. The figure highlights how the desired base trajectories were closely followed
by the controller, even while crossing the obstacle path.

The RMSE values obtained between during the 60 s test were 4.41 cm for the x

component, 4.24 cm for the y component, and 2.81 cm for the z component. These
low RMSE values indicate a high level of accuracy in trajectory tracking, confirming the
controller’s reliability and precision in maintaining the desired trajectory within the tested
scenario. These results suggest that the controller is well-suited for more advanced and
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Figure 5.23. Comparison between velocity commands and velocities filtered estimations.

complex testing, pushing towards its physical limits, since the obstacles in this case were
relatively low with a maximum height of around 10 cm. Actually, this same obstacles
path was tested and also overcome by the default AlienGo controller, so it does not
have enough complexity to showcase the advanced capabilities of the developed NMPC
controller versus the gait pattern generator one.

Although not critically impairing, the computational demands of the NMPC posed
challenges when operating the system in a master-slave configuration from an external
computer. The MPC control loop frequency was slightly lower than desired, around 90 Hz,
which may have contributed to reduced stability. Achieving more stable performance likely
requires a higher control frequency. This underscores the importance of implementing
the controller directly on the onboard Jetson TX2 in future work to ensure real-time
performance and enhance overall system stability.

The NMPC controller was additionally tested as part of an unrelated parallel research
project conducted by other members of the lab on the ARTU-R Unitree A1 quadruped
platform [129], which focused on environment reconstruction through perception sensor
integration. The NMPC controller was qualitatively assessed to perform well, enabling
the robot to traverse obstacles without falling—an improvement over the previous CPG
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controller, which frequently led to falls.

(a) (b)

Figure 5.24. Unitree A1 quadruped NMPC controller testing [129]: (a) Obstacle track,
(b) Elevation map generation.

5.2.3. Steps Towards Testing the Quadruped Manipulator

Due to time constraints, the testing and validation of the entire quadruped manipu-
lator system could not be completed, although the hardware integration was successfully
finalized. The software was adapted satisfactorily from simulation for real hardware im-
plementation using Unitree’s SDK. However, the limited availability of the Z1 arm, which
was being used in parallel for an agricultural robotics project, combined with the tight
schedule, made it unfeasible to complete this task.

Additionally, one of the last challenges encountered during the software integration
phase was related to the communication between the computer master and the Z1 arm,
specifically involving the User Datagram Protocol (UDP) protocol. The issue arose be-
cause the UDP address of the arm was not being correctly detected, which led to difficulties
in establishing its connection.

It is likely that this issue could be resolved by correcting some protocol addresses
or by running the program directly on the onboard Jetson TX2 computer. Localizing
the control loop on the same hardware platform could additionally improve the overall
stability and performance of the system. Unfortunately, due to the aforementioned time
constraint and hardware availability, this solution could not be fully implemented and
tested. However, addressing this issue is recommended for future work to ensure reliable
operation of the quadruped manipulator system.
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Chapter 6

Conclusions and Future Work

The final chapter summarizes the key findings and accomplishments of the project. It
reflects on the project’s outcomes and the overall success in meeting the initial objectives.
Furthermore, this chapter outlines potential future work and areas for further research
and development, aimed at enhancing the robot’s capabilities.

6.1. Main Conclusions

The conclusions drawn from this project highlight the development and implementa-
tion of a quadruped manipulator system with a focus on NMPC for handling locomotion
and manipulation tasks. Through extensive testing, mainly in simulation but also in
real-world environments, several key findings have emerged.

First, the quadruped’s locomotion system, driven by the NMPC controller, exhibited
strong performance across various unstructured environments, including pallet
obstacles, unstable platforms, and complex terrains such as stairs and ramps. The con-
troller demonstrated effective trajectory tracking, maintaining stability even when
confronted with uneven surfaces and sudden perturbations. The low RMSE values ob-
served in these tests confirm the accuracy of the system’s performance, and the reactive
control behavior ensures recovery from destabilizing conditions. However, challenges
remain in environments like stair descents, where leg extension and the absence of
perception-based foot placement optimization led to failures in simulation. The fu-
ture integration of perception into the NMPC model will likely mitigate these issues and
enhance overall stability.

The vision system also delivered promising results, particularly in detecting doors
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and door handles. The system successfully handled both segmentation and recognition
tasks, enabling the robot to approach and manipulate doors in simulated environments.
While the full hardware integration fo the quadruped and manipulator was completed,
time constraints prevented the real-world testing of the integrated system. Despite this,
simulation results suggest that the manipulator system is capable of performing push
door-opening tasks with a reasonable degree of precision, offering a solid foundation for
future tests.

Real-world testing of the quadruped without the manipulator provided valuable in-
sights into the system’s practical capabilities. The NMPC controller successfully managed
the robot’s movements in low-complexity unstructured environments, such as low-height
obstacle paths, proving that the system is robust enough to handle more challenging sce-
narios. The use of an external computer to control the NMPC loop, however, revealed
the limitations of this setup in terms of control frequency and overall system stability.
To overcome this, it is recommended that future iterations run the NMPC controller di-
rectly on the onboard computer to ensure real-time performance and improve the system’s
responsiveness.

While the manipulation tasks were not fully tested due to hardware limitations, the
project has laid a strong foundation for further development. The communication issues
encountered during the integration phase, particularly those related to the UDP protocol
for the manipulator, suggest that future work should focus on resolving these connectivity
problems. Running the entire control loop on the onboard Jetson TX2 is expected ot
address these challenges and optimize the overall system’s performance.

In summary, this project demonstrates the quadruped manipulator system’s poten-
tial to perform complex locomotion and manipulation tasks in unstructured
environments for SAR operations. The successful integration of the NMPC controller
and vision system provides a strong framework for future work. The system effectively
maintained stability and executed precise maneuvers in challenging terrains, with the vi-
sion algorithms supporting detection and manipulation for door-opening tasks. Overall,
the results validate the system’s robustness and readiness for more advanced real-world
testing.

6.2. Future Work Lines

This project has opened up several avenues for future research and development, rang-
ing from short-term improvements to more complex, long-term advancements. These
future work lines can be classified into distinct categories that address different aspects
of the quadruped manipulator system. Some tasks, such as full integration and real-
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time control optimization, are achievable in the near future, while others, like enhancing
autonomy and manipulation capabilities, will require more extensive research efforts.

6.2.1. Integration and Real-World Optimization

• Complete testing of the fully integrated quadruped manipulator: The full
hardware and software integration of the quadruped manipulator system needs to
be tested in real-world conditions. This includes resolving communication issues
between the robotic arm and the master control system, and testing the NMPC and
vision system in conjunction with real-world door-opening tasks.

• Onboard System Optimization: Running the control loop and vision processing
directly on the robot’s onboard computer will likely enhance performance and real-
time responsiveness, reducing latency and improving stability.

• Test interaction with complex real-world objects: In addition to door-opening
tasks, the system should be tested with SAR-specific objects like debris, rubble, or
collapsed structures to enhance the robot’s manipulation capabilities in disaster
scenarios.

• Field deployment in SAR simulations: After lab-based real-world testing, it
would be interesting to deploy the robot in large-scale SAR training exercises, where
it can be tested in realistic disaster scenarios such as earthquake simulations, col-
lapsed structures, or flooded areas to validate its operational readiness.

• Integration with multi-robot SAR teams: Explore the potential for integrating
the quadruped manipulator with other robots (aerial or ground) for coordinated
multi-robot SAR missions, enabling better coverage and faster victim detection and
assistance.

6.2.2. Perception and Control Enhancements

• Incorporation of perception-based foot placement: Implementing perception-
based algorithms to improve foot placement on uneven terrain could significantly re-
duce the risk of falls in challenging environments, especially when navigating stairs,
ramps, or high randomly distributed pallets.

• Integration with room navigation for active exploration pipeline: By com-
bining the door-opening capabilities from this project with the navigation frame-
work for victim active exploration that enables to avoid obstacles, the robot would
be able to explore more rooms in complex environments. This would improve its
effectiveness in SAR missions.
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• Adaptive control for dynamic environments: Enhance the quadruped’s con-
trol system to allow for dynamic adjustment of gait parameters, such as step height
and stride length, in real-time based on terrain feedback. For example, as the robot
encounters obstacles or varying terrain types like rubble, uneven ground, or debris,
the system can automatically increase or decrease the step height to maintain sta-
bility and prevent tripping. This dynamic control can be particularly beneficial in
SAR scenarios where the terrain is unpredictable and constantly changing, improv-
ing the robot’s ability to traverse complex environments without falling or losing
balance.

• Door model NMPC integration: Integrating the door model directly into the
NMPC optimization problem could significantly improve the robot’s door-opening
capabilities by accounting for the dynamics of the door during manipulation. This
would allow the NMPC to generate more accurate trajectories for the manipulation
and base, addressing current issues in the planning phase, such as collisions or
suboptimal movements.

Additionally, incorporating the door model into the optimization process would
not only enhance real-time control but also provide an excellent framework for
generating realistic door-opening trajectories. These trajectories could be
used as training data for RL policies, enabling the robot to learn more adaptive
strategies for door manipulation in a variety of scenarios.

• Door hinge class identification: Enhancing the object detection You Only Look
Once (YOLO) model by incorporating door hinges as an additional class would allow
the system to automatically determine whether a door is a pull-type (with visible
hinges) or a push-type (with hidden hinges). This classification would enable the
robot to adapt its manipulation strategy accordingly, triggering the appropriate
control actions for the specific door type.

• Perception system robustness enhancement: Ensure all vision and depth sen-
sors are calibrated for challenging conditions like smoke, dust, or darkness, which
are common in disaster scenarios, ensuring reliable locomotion performance in low-
visibility environments.

• Develop real-time safety features: Implement emergency stop features, obsta-
cle avoidance systems, and safe interaction protocols to ensure safe operation in
hazardous environments protecting both the robot and any trapped individuals it
encounters.

106 CONCLUSIONS AND FUTURE WORK



UNIVERSIDAD POLITÉCNICA DE MADRID
ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES

6.2.3. Advanced Manipulation and Autonomy

• Improvement of door manipulation abilities: Future work should extend the
door-opening capabilities to include pull-type doors and more complex door mech-
anisms, such as knobs, enhancing the robot’s manipulation repertoire in real-world
environments.

• Robust grasping algorithms: Future work will include the integration of an
independent controller for the gripper within the NMPC combined robotic system.
Refining the grasping capabilities of the Z1 manipulator by integrating advanced
algorithms which consider force feedback could improve performance in handling
different objects. For example, a door of unknown type could be tried to open
first as if it was a push-door type, and if a metric relating the measured torques
on the arm overpass a certain threshold, then it could try the opposite direction.
This would enable to avoid damaging both the robot and the door with which the
interaction is performed.
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Appendix A

Code of Interest

This appendix provides an overview of the software architecture and codebase hosted
on GitHub at ©. The repository is well-documented through a README.md file but some
key comments will be given here. The repository is structured as a ROS package and
includes a comprehensive suite of sub-packages, each tailored for specific functionalities
required for simulation and operation on real hardware [130].

Repository Structure
The code repository is organized into three main branches:

• Quadruped Manipulator Simulation Branch: This branch contains all nec-
essary configurations and enhancements for running simulations on the quadruped
manipulator in SAR scenarios. It enables to control the quadruped manipulator
both as a combined and as a separate system.

• Quadruped Manipulator with Force Compliance Simulation Branch: This
branch is similar to the previous one but incorporates end-effector’s force compli-
ance. This branch includes the door opening simulation. It does not support sepa-
rate system control.

• Quadruped Manipulator Real Hardware Branch: Dedicated to deployment
on the actual system, this branch includes specific adjustments and optimizations to
ensure compatibility with the physical components of the quadruped manipulator.

Sub-packages Overview
The repository comprises 11 sub-packages, each serving a distinct role within the broader
system architecture:

• qm_common/: This sub-package includes the contact sensor and hybrid joint hard-
ware interfaces used across other sub-packages.

• qm_controllers/: It contains and manages the whole control architecture respon-
sible for managing the locomotion and manipulation tasks executed by the robot.
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• qm_description/: Houses the URDF models and mesh files that describe the
physical and visual elements of the robot and simulation environments.

• qm_estimation/: Implements the Kalman filter estimation algorithm for accurate
perception of the robot’s position and orientation relative to its environment.

• qm_gazebo/: This sub-package is specifically geared towards integrating with the
Gazebo simulation environment, containing plugins and launch and configuration
files for simulation.

• qm_interface/: Sets up the NMPC optimal control problem, manages the model
dynamics, reference trajectories, state estimations, constraints and cost functions.

• qm_msgs/: Defines the ROS messages used for communication within the sub-
packages and external nodes.

• qm_planner/: Contains the planning algorithm that computes the strategy for
navigation and manipulation tasks.

• qm_vision/: Dedicated to vision processing, this sub-package implements algo-
rithms for the door opening task.

• qm_wbc/: Houses the WBC control algorithms that coordinate complex movements
and interactions of the robot and solves the hierarchical QP problems.

• qpoases_catkin/: A wrapper for the qpOASES library, which provides optimiza-
tion routines used particularly in the control algorithms.

Ongoing development aims to enhance the capabilities of the ROS package to extend
the functionalities to cover more advanced tasks. Contributions and feedback from the
community are welcomed to drive further innovations and improvements.
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Appendix B

NMPC and WBC Controller Parameters

B.1. NMPC Parameters

Table B.1. State Weight Matrix Q.

Index (i,j) Parameter Description Weight

(0,0) vcomx Normalized Centroidal Momentum (linear) 50.0
(1,1) vcomy Normalized Centroidal Momentum (linear) 50.0
(2,2) vcomz Normalized Centroidal Momentum (linear) 300.0
(3,3) Lx/M Centroidal Angular Momentum 10.0
(4,4) Ly/M Centroidal Angular Momentum 30.0
(5,5) Lz/M Centroidal Angular Momentum 30.0

(6,6) pbasex Base Pose (position) 1000.0
(7,7) pbasey Base Pose (position) 1000.0
(8,8) pbasez Base Pose (position) 3000.0
(9,9) ψ Base Pose (orientation) 1000.0

(10,10) ϕ Base Pose (orientation) 2000.0
(11,11) θ Base Pose (orientation) 2000.0

(12,12) LF_HAA Leg Joint Positions (LF) 5.0
(13,13) LF_HFE Leg Joint Positions (LF) 5.0
(14,14) LF_KFE Leg Joint Positions (LF) 2.5
(15,15) LH_HAA Leg Joint Positions (LH) 5.0
(16,16) LH_HFE Leg Joint Positions (LH) 5.0
(17,17) LH_KFE Leg Joint Positions (LH) 2.5
(18,18) RF_HAA Leg Joint Positions (RF) 5.0
(19,19) RF_HFE Leg Joint Positions (RF) 5.0
(20,20) RF_KFE Leg Joint Positions (RF) 2.5
(21,21) RH_HAA Leg Joint Positions (RH) 5.0
(22,22) RH_HFE Leg Joint Positions (RH) 5.0
(23,23) RH_KFE Leg Joint Positions (RH) 2.5

(24,24) pj1 Arm Joint Positions 5.0
(25,25) pj2 Arm Joint Positions 5.0
(26,26) pj3 Arm Joint Positions 5.0
(27,27) pj4 Arm Joint Positions 5.0
(28,28) pj5 Arm Joint Positions 0.0
(29,29) pj6 Arm Joint Positions 0.0
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Table B.2. Control Weight Matrix R.

Index (i,j) Parameter Description Weight

(0,0) fxLF Feet Contact Forces (LF) 5.0
(1,1) fyLF Feet Contact Forces (LF) 5.0
(2,2) fzLF Feet Contact Forces (LF) 5.0
(3,3) fxRF Feet Contact Forces (RF) 5.0
(4,4) fyRF Feet Contact Forces (RF) 5.0
(5,5) fzRF Feet Contact Forces (RF) 5.0
(6,6) fxLH Feet Contact Forces (LH) 5.0
(7,7) fyLH Feet Contact Forces (LH) 5.0
(8,8) fzLH Feet Contact Forces (LH) 5.0
(9,9) fxRH Feet Contact Forces (RH) 5.0

(10,10) fyRH Feet Contact Forces (RH) 5.0
(11,11) fzRH Feet Contact Forces (RH) 5.0
(12,12) fx Arm Force 0.0
(13,13) fy Arm Force 0.0
(14,14) fz Arm Force 0.0
(15,15) wx Arm Force 0.0
(16,16) wy Arm Force 0.0
(17,17) wz Arm Force 0.0
(18,18) xLF Foot velocity (LF) 5000.0
(19,19) yLF Foot velocity (LF) 5000.0
(20,20) zLF Foot velocity (LF) 5000.0
(21,21) xLH Foot velocity (LH) 5000.0
(22,22) yLH Foot velocity (LH) 5000.0
(23,23) zLH Foot velocity (LH) 5000.0
(24,24) xRF Foot velocity (RF) 5000.0
(25,25) yRF Foot velocity (RF) 5000.0
(26,26) zRF Foot velocity (RF) 5000.0
(27,27) xRH Foot velocity (RH) 5000.0
(28,28) yRH Foot velocity (RH) 5000.0
(29,29) zRH Foot velocity (RH) 5000.0
(30,30) vj1 Arm Joint velocity 3000.0
(31,31) vj2 Arm Joint velocity 3000.0
(32,32) vj3 Arm Joint velocity 3000.0
(33,33) vj4 Arm Joint velocity 1000.0
(34,34) vj5 Arm Joint velocity 1000.0
(35,35) vj6 Arm Joint velocity 1000.0
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B.2. WBC Parameters

Table B.3. Control Parameters for Whole-Body Controller (WBC).

Parameter Description Value

KPswing KP of swing leg 350.0
KDswing KD of swing leg 37.0
KPBH KP of base height 400.0
KDBH KD of base height 140.0
KPBL KP of base linear 400.0
KDBL KD of base linear 140.0
KPBA KP of base angular 400.0
KDBA KD of base angular 140.0
KPJ1 KP of arm joint 1 4000.0
KPJ2 KP of arm joint 2 4200.0
KPJ3 KP of arm joint 3 4000.0
KPJ4 KP of arm joint 4 4000.0
KPJ5 KP of arm joint 5 4200.0
KPJ6 KP of arm joint 6 6000.0
KDJ1 KD of arm joint 1 75.0
KDJ2 KD of arm joint 2 75.0
KDJ3 KD of arm joint 3 75.0
KDJ4 KD of arm joint 4 75.0
KDJ5 KD of arm joint 5 75.0
KDJ6 KD of arm joint 6 75.0
KPEE,x KP of arm linear X 3000.0
KPEE,y KP of arm linear Y 3000.0
KPEE,z KP of arm linear Z 4000.0
KDEE,x KD of arm linear X 75.0
KDEE,y KD of arm linear Y 75.0
KDEE,z KD of arm linear Z 75.0
KPEE,θ KP of arm angular X 2000.0
KPEE,ϕ KP of arm angular Y 2000.0
KPEE,ψ KP of arm angular Z 2000.0
KDEE,θ KD of arm angular X 75.0
KDEE,ϕ KD of arm angular Y 75.0
KDEE,ψ KD of arm angular Z 75.0
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Appendix C

Applications and Impact Analysis

C.1. Applications
This project has significant potential for application in various fields, particularly in

areas where mobility and manipulation in complex unstructured environments are crucial.
The integration of the Unitree Aliengo quadruped robot with the Z1 manipulator enables
the system to perform tasks such as SAR operations in disaster-stricken areas, where the
robot can navigate through rubble and debris to locate and assist victims. In addition, the
system could be employed in industrial maintenance tasks, where the ability to reach
and manipulate objects in hazardous or hard-to-access locations is essential, reducing the
risk to human workers. The robot’s capability to autonomously open doors and traverse
obstacles also opens up possibilities for military applications, where it could be used
for reconnaissance or supply missions in hostile or dangerous environments.

C.2. Impact Analysis
The economic impact of the project is significant, particularly in terms of the initial

investment required for high-tech equipment like the Unitree Aliengo, Z1 manipulator,
and other hardware components. Additionally, the costs associated with research, devel-
opment, and testing are considerable. However, these investments are justified by the
potential to save human lives during SAR operations, where the use of robots re-
duces the need for human rescuers to enter dangerous environments. In the long term,
the deployment of such systems could lead to cost savings by minimizing human risk and
increasing the efficiency of operations.

Socially, the project has a profound impact by enhancing the safety of first re-
sponders and potentially reducing fatalities in disaster scenarios. The robot’s ability
to perform tasks such as navigating through debris, opening doors, and manipulating
objects can be crucial in saving lives. Additionally, the integration of such technology
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in SAR operations highlights the positive role of automation in high-risk situations, con-
tributing to the broader acceptance of robots in roles traditionally occupied by humans.
However, it is also important to consider the ethical implications, particularly concerning
job displacement, as automation could reduce the need for human personnel in certain
roles.

The legal impact of the project is also an important consideration. The deployment
of autonomous robots in SAR operations introduces a number of legal challenges. Issues
surrounding liability in case of equipment failure, compliance with safety standards,
and adherence to privacy laws when operating in sensitive environments must be ad-
dressed. For instance, if a robot malfunctions during a rescue operation, determining the
responsibility could be complex, involving manufacturers, software developers, or opera-
tors. Furthermore, ensuring the robot adheres to regional and international regulations
governing the use of autonomous systems in public spaces is essential. Legal frameworks
must evolve alongside technological advancements to ensure that the benefits of such sys-
tems are harnessed while minimizing potential risks to individuals and society. Lastly,
data security and the handling of sensitive information collected during operations must
comply with the General Data Protection Regulation (GDPR), ensuring that personal
information is safeguarded during rescue missions.

The environmental impact of the project involves the materials used in the con-
struction of the robot, including metals and plastics, which contribute to its carbon foot-
print. Additionally, the electronic components and the energy required to operate the
robot add to the environmental considerations. While the use of advanced robotics in
SAR operations has clear societal benefits, a life cycle assessment would be beneficial
to identify areas where the environmental footprint could be reduced, ensuring the project
aligns with broader sustainability goals.

C.3. Contribution to Sustainable Development Goals

The social robot developed in this project contributes to several Sustainable Develop-
ment Goals (SDGs), as highlighted below and indicated in Figure C.1.

• SDG 3 - Good Health and Well-Being: By enhancing SAR operations, the
project directly supports efforts to save lives and reduce injuries in disaster scenarios,
contributing to overall well-being.

• SDG 8 - Decent Work and Economic Growth: The project encourages the
development of new job opportunities in the fields of robotics, programming, and
maintenance. By fostering innovation and technological advancement, it supports
sustainable economic growth and productive employment.
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Figure C.1. SDGs to which the project contributes.

• SDG 9 - Industry, Innovation, and Infrastructure: The project promotes
innovation in robotics technology, pushing the boundaries of what is possible in
SAR operations and contributing to the development of resilient infrastructure.

• SDG 11 - Sustainable Cities and Communities: By improving the efficiency
and effectiveness of emergency response in urban and disaster-prone areas, the
project helps create safer, more resilient communities.

• SDG 13 - Climate Action: The project indirectly supports climate action by im-
proving disaster response capabilities, which is increasingly important in the context
of climate-related disasters such as floods, hurricanes, and wildfires.

• SDG 17 - Partnerships for the Goals: The project exemplifies the importance of
collaboration between research institutions, technology providers, and other stake-
holders. By leveraging expertise and resources from various sectors, it helps build
effective partnerships that contribute to the achievement of SDGs.
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Appendix D

Temporal Planning and Budget

D.1. Work Breakdown Structure (WBS)
The Work Breakdown Structure (WBS) shown in Figure D.1 provides a comprehen-

sive overview of the project’s phases, outlining the key tasks and milestones required to
integrate and control the legged-manipulator platform.

D.2. Planning
This section details the project timeline corresponding to the work packages defined

in the WBS using a Gantt chart. The Gantt chart is shown in Figure D.2.

D.3. Budget
This budget section outlines the financial resources required for the project. It includes

a breakdown of costs associated with materials, equipment, and personnel.

D.3.1. Material Costs
Table D.1 summarizes the expenses for materials used in the project, including mate-

rials and electronics.

D.3.2. Equipment Amortization Costs
The amortization costs of equipment used during the project, such as the 3D printer

and the robots, are calculated distributing their initial costs over the useful life of these
tools, as summarized in Table D.2.

D.3.3. Personnel Costs
Table D.3 accounts for the labor costs, including the time and expertise of the team

members involved in the project, calculated based on their respective roles and hourly
rates.
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Figure D.1. Project WBS.
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Figure D.2. Project Gantt Chart.
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Table D.1. Project Material Costs.

Table D.2. Project Amortization Costs.

Table D.3. Project Personnel Costs.

D.3.4. Total Cost
Table D.4 shows the total project costs calculation, combining material, equipment,

and personnel expenses to give a complete financial overview of the project’s expenditure.

Table D.4. Project Total Cost.
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